70 research outputs found

    Size-Dependent Relationships between Protein Stability and Thermal Unfolding Temperature Have Important Implications for Analysis of Protein Energetics and High-Throughput Assays of Protein-Ligand Interactions

    Get PDF
    Changes in protein stability are commonly reported as changes in the melting temperature, ΔTM, or as changes in unfolding free energy at a particular temperature, ΔΔG°. Using data for 866 mutants from 16 proteins, we examine the relationship between ΔΔG° and ΔTM. A linear relationship is observed for each protein. The slopes of the plots of ΔTM vs ΔΔG° for different proteins scale as N–1, where N is the number of residues in the protein. Thus, a given change in ΔG° causes a much larger change in TM for a small protein relative to the effect observed for a large protein. The analysis suggests that reasonable estimates of ΔΔG° for a mutant can be obtained by interpolating measured values of TM. The relationship between ΔΔG° and ΔTM has implications for the design and interpretation of high-throughput assays of protein–ligand binding. So-called thermal shift assays rely upon the increase in stability which results from ligand binding to the folded state. Quantitative relationships are derived which show that the observed thermal shift, ΔTM, scales as N–1. Hence, thermal shift assays are considerably less sensitive for ligand binding to larger proteins

    Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry

    Get PDF
    The search for therapeutic agents that bind specifically to precursor protein conformations and inhibit amyloid assembly is an important challenge. Identifying such inhibitors is difficult because many protein precursors of aggregation are partially folded or intrinsically disordered, which rules out structure-based design. Furthermore, inhibitors can act by a variety of mechanisms, including specific or nonspecific binding, as well as colloidal inhibition. Here we report a high-throughput method based on ion mobility spectrometry–mass spectrometry (IMS–MS) that is capable of rapidly detecting small molecules that bind to amyloid precursors, identifying the interacting protein species and defining the mode of inhibition. Using this method we have classified a variety of small molecules that are potential inhibitors of human ​islet amyloid polypeptide (​hIAPP) aggregation or ​amyloid-beta 1-40 aggregation as specific, nonspecific, colloidal or non-interacting. We also demonstrate the ability of IMS–MS to screen for inhibitory small molecules in a 96-well plate format and use this to discover a new inhibitor of ​hIAPP amyloid assembly

    Unfolded states under folding conditions accommodate sequence-specific conformational preferences with random coil-like dimensions

    Get PDF
    Proteins are marginally stable molecules that fluctuate between folded and unfolded states. Here, we provide a high-resolution description of unfolded states under refolding conditions for the N-terminal domain of the L9 protein (NTL9). We use a combination of time-resolved FĂśrster resonance energy transfer (FRET) based on multiple pairs of minimally perturbing labels, time-resolved small-angle X-ray scattering (SAXS), all-atom simulations, and polymer theory. Upon dilution from high denaturant, the unfolded state undergoes rapid contraction. Although this contraction occurs before the folding transition, the unfolded state remains considerably more expanded than the folded state and accommodates a range of local and nonlocal contacts, including secondary structures and native and nonnative interactions. Paradoxically, despite discernible sequence-specific conformational preferences, the ensemble-averaged properties of unfolded states are consistent with those of canonical random coils, namely polymers in indifferent (theta) solvents. These findings are concordant with theoretical predictions based on coarse-grained models and inferences drawn from single-molecule experiments regarding the sequence-specific scaling behavior of unfolded proteins under folding conditions

    Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability

    Get PDF
    This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe

    Neprilysin Is Required for Angiotensin-(1-7)'s Ability to Enhance Insulin Secretion via Its Proteolytic Activity to Generate Angiotensin-(1-2)

    Get PDF
    Recent work has renewed interest in therapies targeting the renin-angiotensin system (RAS) to improve β-cell function in type 2 diabetes. Studies show that generation of angiotensin-(1–7) by ACE2 and its binding to the Mas receptor (MasR) improves glucose homeostasis, partly by enhancing glucose-stimulated insulin secretion (GSIS). Thus, islet ACE2 upregulation is viewed as a desirable therapeutic goal. Here, we show that, although endogenous islet ACE2 expression is sparse, its inhibition abrogates angiotensin-(1–7)–mediated GSIS. However, a more widely expressed islet peptidase, neprilysin, degrades angiotensin-(1–7) into several peptides. In neprilysin-deficient mouse islets, angiotensin-(1–7) and neprilysin-derived degradation products angiotensin-(1–4), angiotensin-(5–7), and angiotensin-(3–4) failed to enhance GSIS. Conversely, angiotensin-(1–2) enhanced GSIS in both neprilysin-deficient and wild-type islets. Rather than mediating this effect via activation of the G-protein–coupled receptor (GPCR) MasR, angiotensin-(1–2) was found to signal via another GPCR, namely GPCR family C group 6 member A (GPRC6A). In conclusion, in islets, intact angiotensin-(1–7) is not the primary mediator of beneficial effects ascribed to the ACE2/angiotensin-(1–7)/MasR axis. Our findings warrant caution for the concurrent use of angiotensin-(1–7) compounds and neprilysin inhibitors as therapies for diabetes

    Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Get PDF
    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death

    RAGE binds preamyloid IAPP intermediates and mediates pancreatic beta cell proteotoxicity

    Get PDF
    Islet amyloidosis is characterized by the aberrant accumulation of islet amyloid polypeptide (IAPP) in pancreatic islets, resulting in β cell toxicity, which exacerbates type 2 diabetes and islet transplant failure. It is not fully clear how IAPP induces cellular stress or how IAPP-induced toxicity can be prevented or treated. We recently defined the properties of toxic IAPP species. Here, we have identified a receptor-mediated mechanism of islet amyloidosis–induced proteotoxicity. In human diabetic pancreas and in cellular and mouse models of islet amyloidosis, increased expression of the receptor for advanced glycation endproducts (RAGE) correlated with human IAPP–induced (h-IAPP–induced) β cell and islet inflammation, toxicity, and apoptosis. RAGE selectively bound toxic intermediates, but not nontoxic forms of h-IAPP, including amyloid fibrils. The isolated extracellular ligand–binding domains of soluble RAGE (sRAGE) blocked both h-IAPP toxicity and amyloid formation. Inhibition of the interaction between h-IAPP and RAGE by sRAGE, RAGE-blocking antibodies, or genetic RAGE deletion protected pancreatic islets, β cells, and smooth muscle cells from h-IAPP–induced inflammation and metabolic dysfunction. sRAGE-treated h-IAPP Tg mice were protected from amyloid deposition, loss of β cell area, β cell inflammation, stress, apoptosis, and glucose intolerance. These findings establish RAGE as a mediator of IAPP-induced toxicity and suggest that targeting the IAPP/RAGE axis is a potential strategy to mitigate this source of β cell dysfunction in metabolic disease

    Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans

    Get PDF
    Fungal glucosylceramide (GlcCer) is a plasma membrane sphingolipid in which the sphingosine backbone is unsaturated in carbon position 8 (C8) and methylated in carbon position 9 (C9). Studies in the fungal pathogen, Cryptococcus neoformans, have shown that loss of GlcCer synthase activity results in complete loss of virulence in the mouse model. However, whether the loss of virulence is due to the lack of the enzyme or to the loss of the sphingolipid is not known. In this study, we used genetic engineering to alter the chemical structure of fungal GlcCer and studied its effect on fungal growth and pathogenicity. Here we show that unsaturation in C8 and methylation in C9 is required for virulence in the mouse model without affecting fungal growth in vitro or common virulence factors. However, changes in GlcCer structure led to a dramatic susceptibility to membrane stressors resulting in increased cell membrane permeability and rendering the fungal mutant unable to grow within host macrophages. Biophysical studies using synthetic vesicles containing GlcCer revealed that the saturated and unmethylated sphingolipid formed vesicles with higher lipid order that were more likely to phase separate into ordered domains. Taken together, these studies show for the first time that a specific structure of GlcCer is a major regulator of membrane permeability required for fungal pathogenicity

    Molecular signature for receptor engagement in the metabolic peptide hormone amylin

    Get PDF
    The pancreatic peptide hormone, amylin, plays a critical role in the control of appetite, and synergizes with other key metabolic hormones such as glucagon-like peptide 1 (GLP-1). There is opportunity to develop potent and long-acting analogs of amylin or hybrids between these and GLP-1 mimetics for treating obesity. To achieve this, interrogation of how the 37 amino acid amylin peptide engages with its complex receptor system is required. We synthesized an extensive library of peptides to profile the human amylin sequence, determining the role of its disulfide loop, amidated C-terminus and receptor “capture” and “activation” regions in receptor signaling. We profiled four signaling pathways with different ligands at multiple receptor subtypes, in addition to exploring selectivity determinants between related receptors. Distinct roles for peptide sub-regions in receptor binding and activation were identified, resulting in peptides with greater activity than the native sequence. Enhanced peptide activity was preserved in the brainstem, the major biological target for amylin. Interpretation of our data using full-length active receptor models supported by molecular dynamics, metadynamics and supervised molecular dynamics simulations guided the synthesis of a potent dual agonist of GLP-1 and amylin receptors. The data offer new insights into the function of peptide amidation, how allostery drives peptide-receptor interactions, and provide a valuable resource for the development of novel amylin agonists for treating diabetes and obesity
    • …
    corecore