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Running title: Amylin receptor engagement 

 

Abstract 

The pancreatic peptide hormone, amylin, plays a critical role in the control of appetite, and 

synergizes with other key metabolic hormones such as glucagon-like peptide 1 (GLP-1). 

There is opportunity to develop potent and long-acting analogs of amylin or hybrids between 

these and GLP-1 mimetics for treating obesity. To achieve this, interrogation of how the 37 

amino acid amylin peptide engages with its complex receptor system is required. We 

synthesized an extensive library of peptides to profile the human amylin sequence, 

determining the role of its disulfide loop, amidated C-terminus and receptor “capture” and 

“activation” regions in receptor signaling. We profiled four signaling pathways with different 

ligands at multiple receptor subtypes, in addition to exploring selectivity determinants 

between related receptors. Distinct roles for peptide sub-regions in receptor binding and 

activation were identified, resulting in peptides with greater activity than the native sequence. 

Enhanced peptide activity was preserved in the brainstem, the major biological target for 

amylin. Interpretation of our data using full-length active receptor models supported by 

molecular dynamics, metadynamics and supervised molecular dynamics simulations guided 

the synthesis of a potent dual agonist of GLP-1 and amylin receptors. The data offer new 

insights into the function of peptide amidation, how allostery drives peptide-receptor 

interactions, and provide a valuable resource for the development of novel amylin agonists 

for treating diabetes and obesity. 

 

Keywords 

amylin, CGRP, calcitonin receptor, GPCR, IAPP, RAMP 
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Appetite control involves an intricate multifaceted system of hedonic and homeostatic 

mechanisms influenced by genetic and environmental factors. Multiple hormones, molecules 

and neurotransmitters interact via the gut-brain axis to elicit both short and long-term effects 

on energy balance
1, 2

. A multitude of neuroendocrine hormones play various roles in 

orexigenic or satiation signaling. These hormones are released by a variety of tissues, thus 

insulin is released from the pancreas, glucagon-like peptide-1 (GLP-1) from the gut, and 

leptin from adipose tissue to confer peripheral and centrally-mediated metabolic effects
3
.  

Amylin is a key part of this axis, being a pancreatic hormone that mediates 

widespread effects on energy homeostasis via brain centres that affect feeding behaviour, 

resulting in suppressed food intake and reductions in body weight and adiposity
4, 5

. These 

effects complement those of GLP-1, and a combination of both amylin and GLP-1 agonists 

may have superior metabolic effects
6
. Amylin also acts as a leptin-sensitizer, with 

combinations of both hormones showing remarkable metabolic benefits
7, 8

. An amylin-

mimetic drug, pramlintide, which differs in amino acid sequence from human amylin by only 

three amino acids, is approved for use in humans as a treatment for diabetes, in conjunction 

with insulin. Pramlintide has also shown proof-of-concept clinical efficacy for the treatment 

of obesity
9
. However, pramlintide is short-acting, requires subcutaneous injection at meal 

times and cannot be co-formulated with insulin
4
. There is tremendous scope for developing 

novel amylin-mimetics with increased potency, half-life and improved physicochemical 

properties, or generating combinations with other metabolic peptides, such as GLP-1. The 

lack of information on how amylin engages its receptor binding site to trigger signaling is 

hampering these developments. 

Amylin receptors reside in the small class B G protein-coupled receptor (GPCR) 

grouping. Recent structures highlight how class B peptide ligands bind to their receptors in an 
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4 

 

extended conformation, with conformational changes likely propagated through multi-residue 

contacts between the peptide N-terminus and the upper portion of the receptor transmembrane 

bundle and extracellular loops (ECL), known as the juxtamembrane region
10, 11

. Though 

valuable, this body of data cannot easily be applied to amylin because high affinity amylin 

binding requires the presence of a second protein to form a heterodimeric receptor complex
12

. 

Amylin activates the calcitonin receptor (CTR), which is also a receptor for the osteogenic 

calcitonin peptide. The association of a single transmembrane-spanning receptor activity-

modifying protein (RAMP) with the CTR alters its pharmacology, resulting in receptors with 

higher affinity for amylin. This mechanism creates multiple amylin receptor (AMY) subtypes 

(hAMY1, hAMY2 and hAMY3) from CTR with RAMP1, 2 or 3, respectively (Fig. 1a)
13-15

. 

To add further complexity, RAMPs can alter G protein-coupling, receptor trafficking and 

downstream signaling of an increasing number of GPCRs, including the calcitonin receptor-

like receptor (CLR) to form calcitonin gene-related peptide (CGRP) and adrenomedullin 

receptors (AM1 and AM2), with the different RAMPs
16

. Drug discovery efforts at RAMP-

coupled receptors including amylin, CGRP and adrenomedullin receptors cannot be truly 

effective unless RAMP contribution to ligand interactions can be defined and the key 

molecular drivers of selectivity between closely-related peptides and receptors can be 

identified. 

Using peptide synthesis and determination of peptide activity at multiple receptors we 

report key drivers for amylin-receptor interactions and identify distinct roles for its two post-

translational modifications in affinity, activity and selectivity. The mechanism of selectivity 

between receptors is remarkably subtle and not clearly linked to sequence changes between 

related peptides, strengthening the notion that selectivity is principally driven via an allosteric 

effect of the RAMP to augment the peptide binding site within CTR. Our data identify a key 

region of the amylin peptide that provides an area of focus to generate higher potency amylin 
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mimetics. We use our mechanistic data and dynamic molecular models to develop a potent 

dual agonist of amylin and GLP-1 receptors. 
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Figure 1. a) Receptor subunit composition, b) activation of signaling pathways at the 

corresponding receptors by human amylin (hAMY), c) activation of signaling pathways at the 

corresponding receptors by all peptides. In b), the concentration response curves are the 

combined mean data from four or five independent experiments (cAMP, pCREB n=5, IP1, 

pERK1/2 n=4). In c), potency data are summarized in radial plots showing mean pEC50 

values from between three and five individual experiments. Exact experimental n is provided 

in Tables SB1-4. All errors are s.e.m. pERK1/2 data is the 15 minute time point. 
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Results and Discussion 

Pramlintide, a first-in-class amylin mimetic, is available for the treatment of insulin-requiring 

diabetes. However, further improvements are required to develop a novel amylin receptor-

directed drug for metabolic disease or other conditions, including Alzheimer’s disease
4, 17, 18

. 

This potential improvement is constrained because little is currently known about the 

mechanisms of amylin receptor binding and activation. Extensive study into the structure and 

function of the related glucoregulatory hormone, GLP-1, has guided the production of the 

most promising anti-obesity and anti-diabetes class of therapy currently available, such as the 

drugs liraglutide and semaglutide
19

. Scrutinizing the properties of amylin is critical for 

progressing drug discovery efforts. This is especially important given the complex 

heterodimeric assembly of the different amylin receptor subtypes (Fig. 1a), and the proposed 

bimodal (two stage) receptor binding mechanism involving the N and C termini of the 

peptide
11

. 

 

Amylin receptors display similar pharmacological profiles irrespective of signaling 

pathway 

GPCRs are well-known for pleiotropic intracellular signaling, giving substantial scope for 

‘functional selectivity’ or ‘biased signaling’, where different ligands preferentially activate 

particular signaling pathways at one receptor, via unique receptor or G protein conformations, 

or linked to the kinetics of ligand binding and unbinding
20-22

. CTR and CTR/RAMP 

complexes have multiple potential ligands and are reported to couple to Gαs, resulting in the 

downstream activation of adenylyl cyclase and cAMP production, to Gαq or to Gαi and to 

promote other downstream signaling events, such as ERK1/2 phosphorylation. How much 

impact the presence of RAMPs/different ligands has on signaling is not well defined
23

. We 

therefore profiled multiple signaling pathways in cells transfected with CTR alone or CTR 
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8 

 

with different RAMPs using multiple ligands. We compared human calcitonin as the cognate 

endogenous ligand of CTR to the drug pramlintide and human amylin as amylin receptor 

agonists and hαCGRP as a second high affinity ligand of the CTR/RAMP1 complex
24

. 

Human amylin, human calcitonin, hαCGRP and pramlintide were all capable of 

inducing cAMP responses at all receptors (Fig. 1b,c). Similar results were obtained for 

downstream CREB phosphorylation, although potency in general was higher at this pathway 

(Fig. 1b,c). Human amylin, human calcitonin, and pramlintide were all capable of inducing 

IP1 accumulation at the different receptors, although hαCGRP was only able to elicit a 

measurable IP1 response at the hAMY1 receptor. All peptides produced ERK1/2 

phosphorylation at two time-points at all four receptors. Figure 1 shows the 15 minute data. 

Although IP1 and pERK1/2 were more weakly activated than cAMP or pCREB, the relative 

potencies of ligands were similar across all pathways (Fig. 1b,c). Concentration-response 

curves for all peptides at all pathways are shown in Supplementary Fig. SB1 and 

corresponding potencies and Emax data are presented in Supplementary Tables SB1-4. These 

data suggest the effect of RAMP on CTR pharmacology is largely independent of signaling 

pathway, at least with respect to the pathways measured in this study. 

 

The amylin C-terminus contains RAMP-dependent drivers of affinity 

To understand the mechanisms through which human amylin triggers receptor signaling, we 

proceeded to explore the role of different regions of this peptide, using cAMP as our 

functional readout because amylin potently activates this pathway at CTR alone or in 

complex with RAMP. Structural data from related CGRP and AM receptors suggests that the 

amylin C-terminus will contain key residues for high affinity binding and potentially 

selectivity determinants between receptors
25

. This region is also highly conserved across 

multiple species (Supplementary Fig. SB2). Therefore we synthesized a series of alanine 
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substituted peptides (Fig. 2 and see Supplementary Chemistry, Supplementary Fig. SC1), 

testing their bioactivity at CTR, AMY1 and AMY3 receptors (see Supplementary Biology). 

We excluded the AMY2 receptor from these analyses because of its weaker induction of 

amylin phenotype in Cos 7 cells
23

. Analysis of the C-terminal 12 amino acids of human 

amylin (residues 26-37) revealed that a single C-terminal residue (T30) was important with 

and without RAMP co-expression (Fig. 3a-c, Fig. SB3-5, Tables SB5-7). Substitution of T30 

with alanine resulted in reductions in amylin potency at all three receptors, although the 

presence of RAMP influenced the magnitude of the reduction (~5-fold at CTR, ~10-fold at 

AMY1 and AMY3). An additional two C-terminal residues (V32, G33) had a 6-15-fold 

reduction in amylin potency but only in the presence of RAMP1 and RAMP3, not at CTR 

alone. Figure 3b and c summarise the potency and Emax data, respectively; full data and 

statistical information can be found in the accompanying Supplementary Biology file. 

Functional data were supported by binding data at AMY1, where reductions in affinity 

generally mirrored changes in potency (Supplementary Fig. SB6). Hence the C-terminal 

sequence of human amylin contains amino acids that are more important for receptor binding 

in the presence of RAMP. We speculated that this could be because the extreme amylin C-

terminus docks less effectively into CTR in the absence of RAMP. To examine this and to 

provide mechanistic insight into our data, we developed the first active models of full-length 

amylin receptors with amylin bound (Fig. 4).  The starting model, along with key peptide 

residues, taken from 750 ns of molecular dynamics (MD) simulations is shown in Fig. 4 and 

Supplementary Fig. SM1. 
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Figure 2. Amino acid sequences of peptides used during the study. Further details are 

provided in Table SC1. Blue shading illustrates alanine substitution (or serine substitution in 

the C2S,C7S peptide), green shading shows a modification, red shading shows the three 

substitutions in pramlintide, purple shading shows incorporation of a CGRP residue into 

amylin, grey shading shows incorporation of an amylin residue into another peptide and 

orange shading illustrates incorporation of a calcitonin residue.  
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Figure 3. a) cAMP production at three receptors by three selected amylin analogs. b) and c) 

Heat maps for all peptide analogs showing effect on potency, as a fold-change from control 

(b) and Emax as a percentage of control (c), in cAMP production at three receptors. 

Concentration response curves are the combined mean data from between four and seven 

independent experiments, with exact experimental n shown on each graph. All errors are 

s.e.m.  *P <0.05 by unpaired t-test for pEC50 or where 95% confidence intervals did not 

include 100 for Emax. Experimental n for all data in the heat map is provided in Tables SB5-7. 
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Figure 4. A) Superposition of the equilibrated CTR:amylin–amide (AMY NH2, magenta) and 

the equilibrated CTR:amylin-COO
-
 (AMY COO

-
, grey) complexes. Both peptides are shown 

in the presence of the CTR ECD (white) and RAMP1 (green) taken from the CTR:amylin–

amide simulation. The peptide amide group hydrogen bonds with the backbone of Ser129, 

while the carboxylate forces the C-terminus to adopt a different orientation. B) The AMY1 

receptor model. C) The ECD of the AMY1 receptor model. D) The peptide N-terminal region 

of the AMY1 receptor model. E) T6 – His302 interactions. Beside the contact between T6 of 

amylin (magenta) and His302 of CTR (grey), a water-mediated interaction occurs during MD 

simulations. This is part of a more extended water network, stabilized at the interface 

between the peptide and the ECL2. Dashed red lines represent hydrogen bonds between 

donor and acceptor atoms.  
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We compared the conformations of the CTR during MD simulations in the presence 

and absence of RAMP1 by evaluating the difference in the distribution of the backbone 

torsional angles using the Hellinger distance (HD)
26

. Fig. 5 shows that, at the extracellular 

vestibule, these differences are mainly localized at the CTR ECD, ECL1, ECL2 and 

TM1,2,3,4 and 7. We also evaluated differences in the number of residue-residue contacts, 

both van der Waals contacts and hydrogen bonds. The predicted number of peptide – receptor 

residue-residue hydrogen bonds and contacts in the CTR ECD, ECLs and extracellular region 

of the helices is dependent on whether RAMP1 is present or absent (Fig. 5b,c). The bound 

simulations suggest that T30 and V32 make different contacts in the presence of RAMP1 

(Fig. 5b,c), supporting the experimental data showing a RAMP-dependent difference in the 

effect of mutation of these residues. While G33 does not show differential contacts along the 

binding pathway, analysis of the Ramachandran plot (Supplementary Fig. SM2) shows that in 

the absence of RAMP1 the distribution of G33 backbone angles is similar regardless of 

whether the peptide is already bound to or is approaching the receptor (Supplementary Fig. 

SM2b,d); the presence of the RAMP1, instead, has a deep influence on the torsional angle 

distribution, with notable differences when the peptide is approaching the ECD compared to 

the bound state (Supplementary Fig. SM2a,c).  

Fig. 6a,b shows significant differences in the early recognition events on the binding 

pathway in the presence and absence of RAMP1, as determined by the supervised MD 

(SuMD) simulations (Supporting Movies 1 and 2); most notably the presence of RAMP1 

increases the predicted interactions with Asn124, Asn125 and Arg126 during amylin 

approach to the ECD (Fig. 6a and Supporting Movie 1), although for Asn125 this could be 

affected by glycosylation which we did not test here
27

. On the other hand, in absence of 

RAMP1 the peptide makes contacts with residues inaccessible when RAMP1 is present, such 

as Tyr56 and Trp76 (Fig. 6b and Supporting Movie 2).  
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Figure 5. A) Hellinger distance (HD) analysis of the φ,ψ protein backbone angles for CTR in 

the presence and absence of RAMP1 (transparent grey ribbon). For each residue, the higher 

HD value between φ and ψ is displayed on a model of the CTR structure (peptide omitted for 

clarity), with small values shown in blue and large values (indicating significant 

conformational differences) in red. B) The difference in CTR and amylin (both ribbons) 

intermolecular hydrogen bond contacts in the presence and absence of RAMP1, with small 

values shown in blue and large values in red. C) The difference in CTR and amylin (both 

ribbons) intermolecular contacts in the presence and absence of RAMP1, with small values 

shown in blue and large values in red.  
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Figure 6. CTR/AMY1 – amylin-amide (A, B, magenta) and CTR/AMY1 – amylin-carboxylic 

form (C, D, magenta) contacts identified during SuMD simulations, plotted on the 

CTR/AMY1 molecular surface. The CTR/AMY1 residues least engaged by amylin (0% 

contact) are colored cyan, while residues most engaged by amylin (100% contact) are colored 

purple. A) SuMD simulations of amylin-amide binding to AMY1 receptor ECD. B) SuMD 

simulations of amylin-amide binding to the CTR ECD. C) SuMD simulations of amylin-

carboxylic form binding to AMY1 receptor ECD. D) SuMD simulations of amylin-carboxylic 

form binding to the CTR ECD.  
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The amylin C-terminal amide is critical for high affinity binding to CTR/RAMP 

complexes 

The amidated C-terminus is strictly conserved among all known amylin sequences even 

though amidation enhances the in vitro propensity to aggregate and form amyloid
28

. 

Intriguingly, this could be substituted in amylin with carboxylate with no loss of peptide 

activity at CTR alone. However, the human amylin-COOH peptide lost potency by 20 and 

58-fold in the presence of RAMP3 and 1, respectively, which was the largest effect for any 

C-terminal analog (Fig. 3a-c, Supplementary Fig. SB3-5, Tables SB5-7). Binding affinity was 

also substantially reduced (Supplementary Fig. SB6). In the CTR ECD crystal structure, the 

salmon calcitonin proline amide makes critical contacts with the Ser129 backbone, supported 

by Asp77, Lys110 and Tyr131, plus hydrophobic interactions with Trp79
29

. We propose that 

the C-terminal amide is critical for receptor selectivity.  

Our models suggest that this could be driven by conformational and electrostatic 

differences in the CTR ECD as a consequence of RAMP interaction. The electrostatic 

potential of the receptor ECD in the vicinity of Y37 is much more negative in the presence of 

RAMP1 than in its absence (Supplementary Fig. SM3), ensuring that the C-terminal –COO- 

group experiences more repulsive interactions than the usual C-terminal amide (–CONH2) 

group; this may underlie the very large experimental reduction in binding seen for the -

COOH C-terminal analog in the presence of RAMP1 (Supplementary Fig. SB6). This is also 

coupled with the reduction in hydrogen-bonding complementarity between the carboxylate 

and the backbone of Ser129 (Fig. 4a). As a consequence, the terminal –COO- group may no 

longer be able to form the same tight binding interactions as amylin is predicted to with 

Ser129, but the Y37 side chain could still make hydrophobic interactions with Trp79, as 

indicted in Fig. 4a. RAMP3 has a similar effect, but the electrostatic potential is not as 

negative and this may explain why the effect of RAMP3 is less marked than that of RAMP1 
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(Fig. 3, Supplementary Fig. SM3c). As highlighted by SuMD simulations, the electrostatic 

repulsion elicited by RAMP1 affects the amylin binding pathway towards the ECD of CTR 

(Fig. 6 and Supplementary Fig. SM4). The models and simulations suggest that when 

approaching the receptor, the C-terminal amide form of the peptide makes contacts with a 

higher number of residues on the surface of RAMP1 (Fig. 6a and Supplementary Fig. SM4), 

compared to the C-terminal carboxylic form (Fig. 6c and Supplementary Fig. SM5), 

indicating a higher number of stabilizing interactions during the early stages of the 

intermolecular recognition. 

C-terminal amidation occurs in many different bioactive peptides, including other 

GPCR peptide ligands such as gastrin, vasointestinal peptide, and GLP-1
30

. This post-

translational modification is known to be crucial for bioactivity in many peptides
30

. That the 

C-terminal amide was a critical determinant of high affinity binding and activity at RAMP-

associated amylin receptors but not at the CTR alone suggests that the C-terminal amidation 

in amylin is not necessarily universally important but depends on the context. The structural 

availability or conformation in which this C-terminal post-translational modification is 

presented to the receptor(s) may act to modulate the activity of amylin and related peptides at 

their receptors. Our modeling suggests that this could occur by the amide affecting the 

binding pathway of a peptide when engaging its receptor.  

 

The extreme C-terminal amino acid of amylin does not exclusively dictate receptor 

selectivity 

The X-ray crystal structures of CGRP and AM bound to the CLR ECD indicate minimum 

interactions between the peptide and the RAMP, which primarily involve the C-terminal 

residue side-chain, namely F37 of CGRP and Y52 of AM
25

. This C-terminal residue is 

conserved as tyrosine in amylin (Supplementary Fig. SB2) and the minimal RAMP 
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interactions naturally carry over into the CTR-RAMP models from the template through the 

homology modeling process. However, alanine substitution had only a small effect at AMY1 

and AMY3 (Fig. 3b,c). To further experimentally interrogate the role of this position as a 

possible RAMP contact in CTR/RAMP complexes and as a potential selectivity determinant 

between CTR and CLR-based receptors we synthesized full-length human amylin and human 

αCGRP with their C-terminal residue exchanged (Fig. 2; i.e. Amylin Y37F and CGRP 

F37Y). Incorporation of the CGRP C-terminal phenylalanine to replace the amylin tyrosine 

did not increase potency at the CLR/RAMP1 CGRP receptor. Instead, this peptide had 

universally decreased potency at all six receptors tested (CTR, AMY1, AMY3, CGRP, AM1, 

AM2) (Supplementary Fig. SB7). The reciprocal substitution in CGRP had an increase in 

potency at the AM1 receptor and an increase in Emax at the AMY3 receptor but little effect at 

the other receptors (Supplementary Fig. SB8, Table SB8). These data suggest that the nature 

of the C-terminal residue in amylin does not exclusively or clearly drive selectivity between 

CLR or CTR-based receptors, consistent with the lack of persistent hydrogen bonding 

between Y37 and RAMP1 in MD simulations (Supporting Movie 3). We extended this work 

to explore exchange of Pro/Tyr between amylin and calcitonin, generating amylin Y37P and 

human calcitonin P32Y (Supplementary Fig. SB9, Table SB8). P32Y calcitonin had a small 

reduction in potency at all receptors but no change in affinity at the AMY1 receptor 

(Supplementary Fig. SB9). Y37P amylin had a small increase in potency, mirrored by an 

increase in affinity at the AMY1 receptor (Supplementary Fig. SB9). This is consistent with 

data for an amylin antagonist fragment
31

. Thus, the C-terminal amino acid in the calcitonin 

peptide family is not a clear and exclusive signature for selectivity or affinity.  

 

The amylin N-terminus contains RAMP-independent drivers of amylin affinity and 

efficacy 
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A recent low resolution cryo electron microscopy structure of CTR suggests that the 

calcitonin N-terminal loop formed by a disulfide bond and adjacent α-helix may make several 

contacts with the upper transmembrane bundle and ECLs of CTR
10

. To determine whether 

this may be a conserved mechanism for amylin and CTR/RAMP complexes, we synthesized 

human amylin-derived peptides that explored different elements of the binding and activation 

mechanism. We synthesized three linearized full-length human amylin peptides lacking the 

C2-C7 disulfide bond and we divided human amylin into two segments (Fig. 2). Omission of 

the cysteine to cystine oxidation step in the human amylin synthesis enabled generation of a 

linear peptide. However, this cysteine-containing peptide spontaneously oxidized in our assay 

conditions (data not shown). Therefore we synthesized two other full-length variants to probe 

the role of the disulfide-containing loop; these were a double serine variant, replacing the two 

native cysteines with serines and also a CAM variant, where the two cysteines were attached 

to carboxyamidomethyl blocking groups (Fig. 2). See Supplementary Chemistry for details. 

Both peptides displayed a decrease in potency, which was greater for the double serine 

variant. This was accompanied by a decrease in Emax for this peptide (Supplementary Fig. 

SB10-12, Tables SB5-7). An intact ring structure in amylin is evidently necessary for full 

bioactivity. Linearized variants of CGRP, human and salmon calcitonin have been previously 

been synthesized. These show a range of activities, depending on the peptide and assay but 

there is a precedent for peptides within this family to have some activity in the absence of an 

intact N-terminal ring
32-35

. 

We further explored the role of the N-terminal ring using the amylin8-37 fragment, 

which was expected to antagonise the receptors and lack efficacy
36

. Instead we observed 

weak partial agonism from this peptide which was almost identical to the profile of the 

double-serine peptide (Supplementary Fig. SB10-12, Tables SB5-7). This suggests that the 8-

37 sequence contains molecular determinants of efficacy, as well as affinity. However, this 
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peptide was of lower purity than all of the other peptides and therefore we confirmed this 

result with a second synthesis of amylin8-37 (amylin8-37(DR)) from our collaborating laboratory 

(Supplementary Fig. SB10-12). For unknown reasons, this second synthesis was also difficult 

to purify to >90%. Interestingly, N-terminal acetylation afforded a >10-fold gain in potency, 

compared to amylin8-37 (Supplementary Fig. SB10-12). Given that this acetylated peptide was 

97% pure, it suggests that the prior results with the lower purity amylin8-37 peptides were not 

artefacts of any impurity. N-terminal acetylation removes the positive charge of the N-

terminus and helps to partially deconvolute the effects due to removal of residues 1 to 7 and 

the disulfide loop from any effects caused by introduction of positive charge. Removal of the 

charge and the addition of an N-capping acetyl group is also expected to increase the helical 

propensity of the peptide. This could explain the improved potency of this analog, compared 

to amylin8-37. 

We next made a peptide that retained only the loop and the predicted α-helix, based 

on the solution structure of human amylin in SDS micelles (PDB code 2KB8
37

); amylin1-17. 

This peptide was also a partial agonist, suggesting that the 7-17 helix contains important 

residues for receptor activation (Supplementary Fig. SB10-12, Tables SB5-7). This is 

supported by the data in Figure 3b, whereby apart from C2 and C7, T6 is the only significant 

residue missing from amylin8-37. The amylin1-17 peptide could provide a useful lead for the 

future development of shorter peptides, such as have been achieved in the near wild-type 

11mer GLP-1 analog
38

, which activates the class B GLP-1 receptor.  

We synthesized alanine substituted peptides from position 1 to 17 within full length 

amylin, excluding the cysteines, to determine the role of individual amylin amino acids 

within this region (see Supplementary Chemistry). Where a native residue was alanine, we 

replaced this with glycine. Figure 3b summarizes these results. Seven analogs exhibited 

decreased potency (T4A, T6A, A8G, T9A, R11A, L12A, A13G) at two or more receptors, 
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which was generally accompanied by a similar reduction in affinity (Fig. 3b, Supplementary 

Tables SB5-7, Fig. SB13-16). T6A and L12A had large effects, with decreased potency for 

both and a substantial decrease in Emax for T6A (Fig. 3a-c). The large effect on potency upon 

mutating L12 (Fig. 3b) probably arises through its predicted hydrophobic interactions to TM1 

(Fig. 7), similar to the interactions shown or inferred in the class B GPCR cryo electron 

microscopy structures
10, 39

. The importance of this residue is underlined by its high 

conservation as hydrophobic in class B GPCR peptide hormones and its complete 

conservation within amylin sequences (Supplementary Fig. SB2)
40

. T6 lies within the critical 

N-terminal region that is absent in weak agonists such as amylin8-37 and is probably one of the 

main drivers of activation. The main interaction of T6, either directly or via bridged water 

molecules (Fig. 4, 7), is predicted to be with His302 on TM5 of CTR; TM5 is known to play 

a key role in activation. The adjacent residue at position 5 is alanine in human amylin, where 

glycine substitution had no effect. This residue is serine in calcitonin and is also predicted to 

interact with His302
10

. We hypothesized that the sequence divergence at this position may 

underlie pharmacological differences between CTR and CTR/RAMP complexes and 

synthesized human amylin with serine at position 5 in place of the native alanine. This 

peptide had increased activity at CTR, AMY1 and AMY3 receptors, with the greatest increase 

at CTR (Fig. 3b, Supplementary Fig. SB17, Tables SB5-7). Thus, position 5 has the potential 

to be an important driver of activity, as has also been observed in CGRP
41

.  
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Figure 7. A) The modeled amylin (magenta) N-terminus binding mode inside the CTR (grey) 

transmembrane domain (RAMP1 is green). The hydrophobic residue L12 orients towards 

TM1, while the opposite side of the peptide is characterized by more hydrophilic amino acids 

(T6, Q10, N14). Overall contacts established by the amylin N-terminus (stick representation) 

inside the CTR transmembrane domain, plotted on the receptor molecular surface. B) 

Intermolecular contacts identified during MD simulations of amylin bound to CTR, plotted 

on the CTR molecular surface, C) Intermolecular contacts identified during MD simulations 

of amylin bound to the AMY1 receptor (RAMP1 in green). The CTR residues least engaged 

by amylin (0% contact) are colored cyan, while residues most engaged by amylin (100% 

contact) are colored purple. 
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Figure 8. Predicted CTR/AMY1 - amylin contacts identified during MD simulations, plotted 

on the amylin molecular surface. The amylin residues least engaged by the receptor (0% 

contact) are colored cyan, while residues most engaged by the receptor (100% contact) are 

coloured purple.  A) MD simulations of amylin bound to the AMY1 receptor. B) MD 

simulations of amylin bound to CTR. C) Supervised MD (SuMD) simulations of amylin 

binding to the AMY1 ECD. D) SuMD simulations of amylin binding to the CTR ECD. E) 

MD simulations of amylin after the SuMD simulations performed on the AMY1 receptor. F) 

MD simulations of amylin after the SuMD performed on CTR. For the SuMD results, the 

data normalization is heavily weighted by the high number of contacts made by T37, so other 

contacts may not be show very strongly. (G) Amylin (magenta, two different views), is 

reported as the reference structure. 
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Predicted interactions of T4 - N14 with multiple residues in the juxtamembrane region 

of CTR are shown in Fig. 7 and Supporting Movies 4 and 5. These suggest how mutation of 

each of these residues has effects on peptide activity. Interestingly. the experimental effect of 

mutations in this region is not hugely dependent on the presence or absence of the RAMP and 

indeed, the significant predicted interactions observed are, bar L12, generally similar 

regardless of whether the RAMP is present or not (Fig. 7). Metadynamics simulations show 

the partial unbinding of the amylin N-terminus under the input of energy, but the initial part 

of the simulation also justifies the bound simulations as the peptide does not explore novel 

interactions as a result of this energy. Fig. 7 shows that the centre of gravity of the peptide N-

terminus interactions within the juxtamembrane region is predicted to shift away from ECL2 

and towards the hydrophobic surface on TM1/TM2/TM7 when RAMP1 is present. 

Other experimentally important positions for regulating peptide activity were Q10, 

N14 and V17. Alanine substitution in human amylin at each of these positions unexpectedly 

increased activity, particularly at CTR and AMY1 (Fig. 3b,c, Supplementary Fig. SB13-16, 

Tables SB5-7), suggesting that alteration of the side-chains of these residues yields modified 

peptide-receptor interactions. In our models, Q10 is predicted to interact with Trp290 but in 

Q10A, this interaction is lost. In our simulations, Glu294 flips into the resulting hydrated 

cavity, thereby modifying the ECL2 conformation (Supporting Movie 6) and interacts with 

K1 of amylin; either of these effects may contribute to the increased activity of Q10A.  

Q10, N14 and V17 lie on the opposite side of the amylin helix to L12 and face 

towards ECL2. Hence we hypothesized that alanine substitution of any of these residues 

could alter the helical propensity of unbound amylin, affecting receptor interactions and 

potency. The AGADIR algorithm suggests that two variants are predicted to have a lower 

helical propensity (Q10A and N14A) than human amylin, whereas V17A is predicted to have 

a higher helical propensity than the unmodified peptide (Supplementary Fig. SB18). Thus, 
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there is no clear correlation between receptor activity and predicted helical propensity for 

these variants. Future studies could consider the effect of these substitution on receptor 

binding kinetics, given the known importance to kinetics of the helical region in salmon 

calcitonin
42

. 

The RAMP-dependent behaviour of many analogs, together with our modeling 

indicates that the principal mechanism for how RAMPs alter the binding pocket of the 

receptor is allosteric, in line with other data
31, 40, 43

. This contrasts with CLR, where direct 

RAMP-peptide interactions have been demonstrated. The allosteric mechanism RAMPs 

employ to modulate CTR pharmacology and signaling may have broader implications for 

other GPCRs. RAMPs may sculpt the peptide-binding pocket to differentially expose 

receptor residues that can associate with the C-terminal amide or other residues, affecting 

affinity and downstream activation and signaling. Our modeling suggests that this can be 

achieved in a number of different ways, including steric effects, electrostatic effects and 

effects on the binding pathway. The repertoire of RAMP-associating GPCRs identified spans 

the GPCR superfamily
16

. The ubiquitous expression of RAMPs and their co-evolution with 

GPCRs suggests that they will have many more receptor partners than is currently 

appreciated, emphasizing the need for greater understanding of their effects on GPCRs
44

. It 

may be fruitful to explore the correlation between the presence or absence of a C-terminal 

amide on peptide ligands with phenotypic effects of RAMPs on given GPCRs.  

 

Amylin analog signaling 

Amylin analogs with increased activity could be valuable drug leads, particularly if the 

peptide is shorter than human amylin. It was therefore important to determine whether 

increased activity of some analogs translated into a system that endogenously expresses 

amylin receptors. The major target site for amylin is the brainstem
45

, which has abundant 
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high affinity amylin binding sites
46

. We prepared primary rat brainstem cultures from the 

medulla; this includes the area postrema and the nucleus of the solitary tract, as well as other 

nuclei that are reported to express CTR and other amylin receptor subunits
47-50

. We  

confirmed that CTR was present with two different antibodies (Supplementary Fig. SB19), 

although we were unable to confirm co-localization of RAMPs in our cultures due to a lack 

of suitable antibodies. Nevertheless, we tested the activity of human amylin and Q10A 

amylin at increasing cAMP production in these cultures. Increased activity of this analog was 

retained in this physiologically-relevant system (Fig. 9). However, it is not clear from these 

data whether amylin is acting via CTR alone or an amylin receptor. Amylin potency is 

relatively low and this could suggest it is acting via CTR alone but this could be a 

consequence of this particular mixed nuclei culture. Future studies should examine amylin 

action in more defined cultured from discrete brainstem nuclei.  

We questioned whether increased activity would also occur if we substituted Q10 in 

the approved drug pramlintide with alanine. Q10A pramlintide showed small increases Emax 

at AMY1 and AMY3, when compared to unmodified pramlintide (Fig. 3b, Tables SB5-7).  
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Figure 9. cAMP production in rat brainstem cultures by human amylin or Q10A human 

amylin. Concentration-response curves are the combined mean data from four independent 

experiments. All errors are s.e.m. *P <0.05 by unpaired t-test. 

 

Any alteration to a peptide can affect how it engages its receptors and trigger 

signaling, with the potential for signal bias
51

. Therefore we tested a selection of peptide 

analogs for their ability to affect other pathways, namely CREB or ERK1/2 phosphorylation 

and IP1 accumulation. We chose T6A, which had decreased cAMP activity and a smaller 

reduction in affinity, along with Q10A and V17A both of which had increased activity with 

respect to cAMP production and distinct effects on affinity and predicted helical propensity. 

Relative to amylin, all analog peptides exhibited similar  signaling profiles at all receptors for 

each pathway (Supplementary Tables SB9-12, Fig. SB20-21). T6A displayed lower relative 

efficacy, calculated as ∆Log(τ/KA), when compared to amylin. Q10A and V17A displayed 

higher or equivalent ∆Log(τ/KA) to amylin (Supplementary Fig. SB21a). When compared to 

a reference pathway (cAMP) to account for differences in the relative efficacy between the 
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different analog peptides, no significant signaling bias, calculated as ∆∆Log(τ/KA), was 

observed (Supplementary Fig. SB21b). Thus, despite differences in the relative efficacy these 

analog peptides appear to have relatively balanced signaling for the measured pathways.  

 

A peptide combining pramlintide and exendin-4 retains potent dual receptor activity 

Our data and models provide a valuable resource for the design of novel amylin-based 

peptides. Metabolic disease results from the dysregulation of a multitude of hormones and 

thus, combination hormone therapies containing amylin could be a valuable approach for 

successful treatment
8
. We chose to exploit the synergistic behaviour exhibited by amylin 

agonists and GLP-1 agonists
4
 to produce a novel dual agonist of GLP-1 and amylin receptors, 

coining the phrase “DAGAR”. Such molecules could be used as pharmacological probes to 

further explore this intriguing biology. Previous attempts to create agonists with dual amylin 

and GLP-1 receptor activity have resulted in reduced activity compared to the single parent 

peptides. For example, CTR was used to probe amylin-like activity with a marked reduction 

in agonism of approximately 25-fold
52, 53

. This reduced activity could be a consequence of 

joining the peptides via the amylin analog N-terminus, whereby the modified peptide could 

no longer fit effectively within the transmembrane domain, or because the method of 

conjugation was sub-optimal for peptide-receptor activity
52, 53

.  

Here we developed a new approach using Cu(I)-catalyzed alkyne azide cycloaddition 

to join the C-terminus of the GLP-1 receptor agonist drug exendin-4 to position 35 towards 

the C-terminus of pramlintide (Supplementary Fig. SC3), which our amylin MD simulations 

(Fig 8, 10a, Supporting Movie 3) and existing data on exendin-4
54, 55

 suggested would be 

well-tolerated. We also selected position 35 in pramlintide because we have previously 

reported that this position appears to tolerate glycosylation, even with large sugars
56

. 

Exendin-4 was therefore modified with an azido-lysine tag at the C-terminus and pramlintide 
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was modified with a complementary acetylene-containing propargylglycine residue at 

position 35. Subsequent “click chemistry” smoothly afforded the novel triazole-linked hybrid 

peptide termed DAGAR1. Pleasingly, DAGAR1 retained equivalent Emax to pramlintide and 

had only a small reduction in potency  compared to pramlintide at CTR, demonstrating an 

improvement over prior efforts (Fig. 10b). At the AMY1 receptor, this peptide had equivalent 

Emax to pramlintide and retained nanomolar potency but had an ~10-fold reduction in potency 

and binding affinity compared to pramlintide (Fig. 10c, Figure SB22). This greater reduction 

in the presence of RAMP1 could be a consequence of interference with the allosteric 

mechanism. At the GLP-1 receptor DAGAR1 retained sub-nanomolar potency, which was 

only 3.8-fold lower than unmodified exendin-4 (Figure 10d). The Emax of DAGAR1 was 

equivalent to Exendin-4 at the GLP-1 receptor. The potent activity of this bifunctional 

peptide highlights the value of our structure-function driven strategy and the power of click 

chemistry for site-specific conjugation of long peptides that contain only minor modifications 

compared to the native sequence. This approach illustrates how long peptides can be 

efficiently joined together, creating opportunities for pairing diverse combinations of 

peptides. 
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Figure 10. Receptor activity of a dual amylin and GLP-1 receptor agonist 

(DAGAR1). a) Position N35 (dots) in amylin (magenta) when bound to the AMY1 receptor 

ECD, b),c),d) cAMP production at human CTR (b) AMY1 (c) and GLP-1 (d) receptors. 

Concentration response curves from transfected Cos-7 cells are the combined mean data from 

six to eight independent experiments. All errors are s.e.m. *P <0.05 by unpaired t-test. 

 

Conclusion 

Our extensive characterization of the human amylin sequence distinguished discrete residues 

and structural features that were important for receptor binding and activation. The data, 

combined with extensive molecular modeling offer new insights into the function of peptide 

amidation and how allostery may drive peptide-receptor interactions. The data also provide a 

valuable resource for the development of novel amylin agonists for treating diabetes and 

obesity. 
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Methods 

 

Cell culture and transfection 

Receptors were expressed in mammalian cells via transient transfection. Cos-7 cells were 

used because these lack endogenous expression of RAMPs, CLR and CTR, allowing careful 

control of the receptor that is expressed
57

. The cells were cultured as previously described
57

. 

Briefly, cells were maintained in Dulbecco’s modified eagle media (DMEM) supplemented 

with 8% heat-inactivated foetal bovine serum (FBS) in a 37 °C humidified incubator with 5% 

CO2. Cells were seeded into 96 well or 48 well plates at a density of 20,000 or 50,000 cells 

per well (determined using a Countess Counter™, Thermo Fisher, New Zealand) and left for 

24 hours prior to transfecting. Transfections were performed using polyethylenamine as 

previously described
57

. All DNA constructs were human receptors inserted in the mammalian 

expression vectors pcDNA3 or pcDNA3.1. Multiple splice variants of CTR have been 

reported, with the majority of research focusing on the CT(a) receptor isoform, which is 

conserved across mammals
58

. In this manuscript, CTR is the CT(a) receptor splice variant, 

according to International Union of Basic and Clinical Pharmacology guidelines, generating 

AMY1(a), AMY2(a) and AMY3(a) subtypes with RAMP1, RAMP2 and RAMP3, respectively
12, 

15
. In the main manuscript, CTR, AMY1-3 are used for simplicity. Specifically, constructs 

were the Leu447 polymorphic variant of haemagglutinin (HA)-tagged hCT(a) receptor (kindly 

provided by Prof Patrick Sexton, Monash Institute of Pharmaceutical Sciences, Australia), 

hGLP-1 receptor (also from Prof Patrick Sexton), FLAG-tagged hRAMP2
59

, myc-tagged 

hRAMP1 and untagged hRAMP3 (Kindly provided by Steven Foord, GlaxoSmithKline, 

UK). HA-CLR was also used in some experiments. All N-terminally-tagged constructs have 

been characterized and previously reported to not affect receptor function
35, 59-61

. 
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Peptides 

All peptides were synthesized by Fmoc solid phase peptide synthesis (Fmoc SPPS), using 

different conditions, depending on the peptide sequence. These are outlined below and in 

Supplementary Chemistry. Supplementary Chemistry Table SC1 provides a summary of 

conditions.  

 

Peptide synthesis: general procedure 

Human amylin is notoriously difficult to synthesise, can be insoluble and forms fibrils under 

some conditions
62

. We have previously reported the successful synthesis and bioactivity of 

human amylin, with no evidence of cell death under our assay conditions
63, 64

. SPPS was 

carried out on-resin using the Fmoc/tBu strategy (Supplementary Fig. SC1). Briefly, in order 

to afford a C-terminal amide for peptide analogs a 4-[(R,S)-α-[1- (9H-floren-9-

yl)]methoxycarbonylamino]- 2,4-dimethoxy]phenoxyacetic acid (Fmoc Rink amide) was 

attached to aminomethyl Chemmatrix® (AM-CM) resin or aminomethyl polystyrene (AM-

PS) resin. In order to obtain a C-terminal acid for human amylin (-COOH) Fmoc-O-tert-

butyl-L-tyrosine attached to a 3-(4-hydroxymethylphenoxy)propionic acid (Fmoc-Tyr(tBu)-

HMPP) was coupled to AM-CM as previously described
65

. The peptide was elongated using 

either a microwave-assisted Biotage
®

 initiator + alstra (Biotage, Uppsala, Sweden) or Liberty 

(CEM, Matthews, NC, USA) or a room temperature Tribute™ or PS3™ (Gyros Protein 

Technologies, Tucson, AZ, USA) peptide synthesizers (see Supplementary Chemistry for 

further details). Cleavage from the resin with simultaneous side-chain deprotection was 

achieved using trifluoroacetic acid/triisopropylsilane/water/3,6-dioxa-1,8-octane-dithiol 

(TFA/iPr3SiH/H2O/DODT, 94/1/2.5/2.5, v/v/v/v) for 2-3 hours, precipitated with cold diethyl 

ether, isolated by centrifugation, dissolved in 50% aqueous acetonitrile containing 0.1% TFA 

and lyophilized. For formation of the disulfide bond, the crude peptides were dissolved in 
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DMSO (10 mg/mL), and a solution of 2,2’-dithiobis(5-nitropyridine) (DTNP, 0.5 eq.) in 

DMSO (20 mg/mL) was added and the mixture shaken for 20 min. The mixture was diluted 

with H2O containing 0.1% TFA to a concentration of 1 mg/mL and immediately purified by 

semi-preparative reversed phase high-performance liquid chromatography (RP-HPLC). Fig. 2 

shows the amino acid sequences of all peptides used in this study. Further details, including 

information on peptide purity are provided in Supplementary Chemistry.  

 

Dual agonist synthesis 

Nα-Fmoc-Nε-azide-L-Lysine [Fmoc-Lys(N3)-OH] and Nα-Fmoc-L-propargylglycine (Fmoc-

Pra-OH)
66 

building blocks were used for incorporation of azide- and alkyne-handles during 

Fmoc SPPS of [Lys(N3)]40-exenatide and [Pra]35-pramlintide analogs, respectively, required 

for subsequent “click chemistry”
67, 68

. For each, the C-terminal amide was installed by the use 

of the Rink amide linker covalently bonded to AM-CM resin using conditions specified in 

Supplementary Chemistry. For synthesis of crude [K(N3)]40-exenatide, Nα-Fmoc 

deprotection was initially carried out using 20% piperidine in DMF for 2 x 5 min, followed 

by coupling of Fmoc-Lys(N3)-OH using O-(7-azabenzotriazol-1-yl)-N,N,N',N'-

tetramethyluronium hexafluorophosphate (HATU), and 2,4,6-collidine at room temperature 

for 1 h. The remaining sequence was elongated using a Biotage inititator + Alstra peptide 

synthesizer. Synthesis of crude [Pra]35-pramlintide was performed using the PS3
TM

 peptide 

synthesizer (see Supplementary Chemistry for further details). Both peptides were 

individually cleaved from the resin, isolated and lyophilized using conditions described in the 

peptide synthesis general protocol. The crude [K(N3)]40-exenatide (1.15 mg, 2.7 x 10
-4 

mmol) and [Pra]35-pramlintide (1.06 mg, 2.7 x 10
-4 

mmol) were dissolved in 40 µL DMSO 

(degassed, N2). 0.25 M CuSO4·5H2O (4 µL, 1 x 10
-6 

mol) and 0.1 M Na ascorbate (10 µL, 1 x 
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10
-6 

mol) were added and the resulting mixture was shaken for 5 min at 80°C. The crude 

product was diluted (H2O, 500 µL), and purified by RP-HPLC.  

 

Experimental design 

For signaling pathways apart from cAMP, time-course experiments were first conducted with 

a saturating concentration of peptide to determine the optimal time to conduct concentration-

response experiments (data not shown). Concentration-response experiments were then 

conducted with the same experimental design for all pathways, including cAMP assays. For 

signaling assays, the relevant control peptide was included in each independent experiment 

and on each assay plate. For radioligand binding studies a control peptide curve was included 

for each experimental day but not for each plate due to the difference in plate size (48 well 

plates). In all cases, duplicate or triplicate technical replicates were included for each 

biological replicate (independent experiment), and each experiment was repeated at least 

three times. This minimum sample size was chosen based on prior extensive experimentation 

using this experimental design
40, 43, 60, 69, 70

. In some cases, n is larger where peptides were 

resynthesized and re-tested. Each biological replicate involved plating cells from a distinct 

passage, separate transient transfection and separate peptide dilutions, constituting 

experimental n. In the case of primary brainstem cultures, where the receptors are 

endogenously expressed, experimental n relates to separate preparations of cultures from 

individual litters and separate peptide dilutions. Sample size for primary cultures was 

estimated from prior cAMP data in primary trigeminal ganglia neurons
71

. Blinding was not 

conducted but peptides were randomized between assay plates or within assay plates to 

ensure that there was no bias from plate position. 

 

Cell signaling assays - cAMP 
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cAMP assays were performed using the LANCE cAMP detection kit (Perkin-Elmer Life and 

Analytical Sciences, Waltham, MA, USA) as previously described with minor 

modifications
72

. All cAMP assays were performed in the presence of 1 mM 3-isobutyl-1-

methylxanthine (IBMX) (Sigma-Aldrich, St. Louis, MO, USA) and contained 0.1% DMSO. 

Briefly, Cos-7 cells were serum starved in cAMP assay media (DMEM + 0.1% BSA + 1 mM 

IBMX) for 30 minutes at 37 °C prior to peptide stimulation. Peptides were serially diluted in 

cAMP assay media and cells incubated with assay media alone or each concentration of 

peptide at 37°C for 15 minutes. Media was then aspirated and the reaction stopped by 

incubating with 50 µl of ice-cold ethanol for 10 minutes at -20°C. Ethanol was evaporated off 

the samples in a fume hood and cAMP extracted in 50 µl (brainstem cultures 20 µl) of cAMP 

detection buffer (0.35% Triton X-100, 50 mM HEPES and 10 mM calcium chloride in 

ddH2O, pH 7.4) and shaken at room temperature for 10 minutes. Five microlitres of cell 

lysates were transferred to a 384-well optiplate and cAMP measured. Five microlitres of 

antibody mix (1:200 Alexafluor 647 anti-cAMP in detection buffer) was added and incubated 

at room temperature for 30 minutes. Ten microlitres of detection mix (1:4500 Europium-

W8044 labelled streptavidin and 1:1500 biotin-cAMP in detection buffer) was added and 

incubated for four hours at room temperature. Plates were read on an Envision plate reader 

(Perkin-Elmer Life and Analytical Sciences, Waltham, MA, USA). The concentration of 

cAMP in each sample was determined from a standard curve that was generated in each 

assay. 

 

Cell signaling assays - IP1 

IP1 assays were performed using the IP-One Tb kit (Cisbio, Bedford, MA, USA) with minor 

modifications from the manufacturer’s protocol. Briefly, Cos-7 cells were serum starved in 

assay media (DMEM + 0.1% BSA + 0.1% DMSO) for 30 minutes at 37°C prior to peptide 

Page 35 of 59

ACS Paragon Plus Environment

ACS Pharmacology & Translational Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



36 

 

stimulation in the presence of 50 mM LiCl to prevent IP1 degradation. Cells were incubated 

with assay media containing 50 mM LiCl alone or containing each concentration of peptide at 

37°C for 90 minutes. Media was aspirated and detection mix was added (14 µl buffer, 3 µl of 

IP1-coupled d2 fluorophore, and 3 µl Eu-cryptate conjugated anti-IP1 monoclonal antibody). 

Samples were then incubated at room temperature for 1 hour on a shaker before 15 µl was 

transferred to a white 384-well optiplate and measured on an Envision plate reader (Perkin 

Elmer). The concentration of IP1 in each sample was determined from a standard curve that 

was generated in each assay. 

 

Cell signaling assays - ERK1/2 and CREB phosphorylation 

Phosphorylated (p) extracellular signal–regulated kinase 1/2 (ERK1/2) and CREB were 

detected using the AlphaLISA
®

 SureFire
®

 Ultra 
TM

 pERK1/2 (Thr202/Tyr204) or the 

AlphaLISA
®

 SureFire
®

 Ultra
TM

 pCREB (Ser133) assay kits (Perkin Elmer Life and 

Analytical Sciences, Waltham, MA, USA) as per the manufacturer’s protocol. These assays 

are well-characterized and are a sensitive method for the detection of phosphoproteins, 

displaying equivalent or greater sensitivity than western blotting and other methodologies
72-

75
. Briefly, Cos-7 cells were serum starved in assay media (DMEM + 0.1% BSA + 0.1% 

DMSO) for 4 hours at 37°C /5% CO2 prior to peptide stimulation. Peptides were serially 

diluted in assay media and cells incubated with assay media alone or each concentration of 

peptide for 7 or 15 minutes for pERK1/2 detection or 15 minutes for pCREB detection. FBS 

(50%) in pERK1/2 or 50 µM forskolin in pCREB assays were used as a positive controls. 

Media was then aspirated and the cells lysed in 25 µl of the kit lysis buffer, followed by 

shaking for 10-15 minutes at room temperature. Ten microliters of cell lysate was transferred 

to a white 384-well optiplate. Five microlitres of acceptor beads coated with a Captsure
TM

 tag 

immobilising an ERK1/2 or CREB-specific antibody was added and incubated at room 
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temperature in the dark for one hour. Five microlitres of donor beads coated with 

streptavidin, which captures a biotinylated antibody specific for the phosphorylated protein, 

was added and incubated in the dark at room temperature for one hour. Plates were read on an 

Envision plate reader (Perkin Elmer). In these assays, the signal is directly proportional and 

so no standard curve was used. 

 

Data analysis - signaling assays 

All data are the mean ± the standard error of the mean (s.e.m.), combined from n independent 

experiments. Most data were analyzed using GraphPad Prism 7 (GraphPad Software, La 

Jolla, CA). For each individual experiment, concentration-response curves were fitted using 

three-parameter non-linear regression to determine the pEC50, after first determining that the 

Hill slope was not significantly different from one via four parameter non-linear regression 

and F-test. Individual pEC50 values were combined to generate mean data. Due to day-to-day 

variability because of transient transfection (Supplementary Fig. SB23), the Emax in each 

experiment was normalized such that the data are expressed as a percentage of the Emax for 

the control curve performed in parallel. The percentage Emax values were then combined to 

generate mean data. To determine the effect of a peptide analog compared to control, 

statistical significance was accepted at *P < 0.05 using unpaired two-tailed t-test for pEC50 or 

where 95% confidence intervals did not include 100 for Emax. Ligand bias was quantified in 

GraphPad Prism by analyzing the concentration-response curves using the operational model 

of agonism, as described previously
76

. The system maximum was defined as the highest Emax 

determined for each signaling pathway at a particular receptor using individual three 

parameter concentration-response curves. This analysis was conducted on data normalized to 

the maximal amylin response to estimate ∆Log(τ/KA) and ∆∆Log(τ/KA) values. These values 
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were then combined and compared to the control (amylin) by one-way ANOVA with a post-

hoc Dunnet’s test. Statistical significance defined at *P < 0.05. 

 

Radioligand binding assays 

Competition binding assays were used to determine comparative affinities between control 

and test peptide at AMY1 receptors, using radiolabelled I[125]-CGRP
43, 77

. Control 

experiments were completed to ensure that the probe was functional and behaved as expected 

with binding to the CGRP and hAMY1 receptors (Supplementary Fig. SB24). Following 

transfection, plates were removed from the incubator, old media was removed and the wells 

were washed once in binding buffer (37
o
C) composed of DMEM and 0.1% BSA (250 

µl/well). Binding buffer was aspirated and 100 µl of binding buffer was added per well 

followed by 50 µl radiolabelled I[125]-hαCGRP (Perkin Elmer) at 30,000 cpm/well and 

finally 50 µl competitor peptide at a range of concentrations. Total binding was obtained 

from four wells per plate with radioligand alone, and non-specific binding was obtained from 

two wells per plate. To define non-specific binding, we used 3 µM human amylin. The plates 

were incubated at room temperature for one hour. After which, plates were aspirated and 250 

µl of ice-cold PBS was added per well. The PBS was aspirated and 0.2 M NaOH (200 µl) 

was added to each well to lyse the cells. The lysates were then transferred to 1.2 mL 

microdilution tubes and read on a Wizard2 gamma counter (Perkin Elmer).   

 

Data analysis – radioligand binding 

Mean non-specific binding was subtracted from the raw data to obtain specific binding, 

which was then expressed as a percentage of the total binding to obtain % specific binding in 

each experiment. Curves were fitted to these data using a non-linear regression three-

parameter logistic equation to obtain pIC50 values in GraphPad Prism 7.02. These were 
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combined and compared by two-tailed unpaired t-test with statistical significance defined at 

*P < 0.05.  

 

Brainstem cultures – Isolation and cAMP signaling 

All procedures involving the use of animals were conducted in accordance with the New 

Zealand animal welfare act (1999) and approved by the University of Auckland Animal 

Ethics Committee. Isolation and culture of brainstem medulla cells was performed based on 

previously described methods
71

. For each experiment, four 5 day-old postnatal Wistar rat 

pups (male and female) were euthanized by decapitation and the medulla collected in ice-cold 

Hank’s balanced salt solution (HBSS) containing HEPES (25 mM), pH 7.2-7.4. Medulla 

were dissociated by incubation in the same buffer with added dispase II (10 mg/mL) for 30 

minutes at 37°C. Cells were pelleted by centrifugation at 500 x g for three minutes, re-

suspended in the HBSS/HEPES buffer without dispase, and triturated with a 1 mL pipette 15 

times. Cells were pelleted again by centrifugation at 500 x g and re-suspended in L15 media 

containing HEPES (25 mM), pH 7.2-7.4. Cells were then enriched by differential 

centrifugation through a BSA gradient. The medulla cell pellet was resuspended in 

Neurobasal A containing B27 and diluted penicillin, streptomycin, L-glutamine mix (Thermo 

Fisher, New Zealand) and pre-plated for one hour at 37
o
C. Cells were then plated into 96 well 

poly-D-lysine-coated cell culture plates. Cultures were maintained at 37
o
C in a humidified 

incubator for five days. During this time the media was replaced twice (24 and 96 hours). 

cAMP assays were then performed as described previously
71

. cAMP was measured using the 

LANCE ultra cAMP detection kit (Perkin-Elmer Life and Analytical Sciences, Waltham, 

MA, USA).  

 

Brainstem cultures - Immunofluorescence 
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For immunofluorescence, cells that were prepared as per the above procedures were fixed in 

96 well cell culture plates with 4% paraformaldehyde for 10 minutes, washed twice with PBS 

and stored in PBS at 4
o
C before processing. Cells were blocked with 10% goat serum in PBS 

for one hour at room temperature. Cells were then incubated at 4°C overnight with anti-CTR 

primary antibody (pAb 188/10 1:500 or mAb 9B4 1:100; Welcome receptor antibodies Pty 

Ltd, Melbourne, Australia) in PBS containing 1% goat serum. These antibodies were selected 

as they are well characterized to recognize CTR
50, 78

. Additional controls for 188/10 are 

provided in Supplementary Fig. SB19. Cells were washed with PBS and incubated with 

secondary antibody (Alexa Fluor 568 goat anti-rabbit IgG, 1:200, A11011, Lot# 1778025 or 

Alexa Fluor 594 goat anti-mouse, 1:200, A11032; Thermofisher, New Zealand) at room 

temperature for one hour in the dark. Cells were washed with PBS and then counterstained 

with 4',6-diamidino-2-phenylindole (DAPI; Thermofisher) for 5 minutes. The DAPI was 

replaced with PBS and the cells imaged using an Operetta high content screening system 

(Perkin-Elmer Life and Analytical Sciences). Images were collected using the Harmony and 

Columbus software packages (Perkin-Elmer Life and Analytical Sciences). Three 

independent cultures were prepared and representative images are shown. 

 

Modeling  

Models of the human CTR:amylin or CTR:RAMP:amylin complexes were generated from 

the cryo-electron microscopy structure of CTR (PDB code 5UZ7)
10

, the X-ray structure of the 

CTR extracellular domain (ECD) (PDB code 5II0)
29

 and the X-ray structure of the CLR-

RAMP1 ECD complex (PDB code 4RWG)
25

, combined using Modeller
79

, in line with 

approaches described elsewhere
40, 80

. MD simulations of the complex embedded in a POPC 

bilayer were carried out using ACEMD
81

 as for previous work
51, 80

, but additional SuMD 

simulations were carried out to investigate putative mechanisms of amylin C-terminus 
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binding to the receptor ECD. The enhanced sampling of SuMD, an adaptive sampling 

method
82

, means that ligand binding
83-86

 and peptide binding
87

 can be studied within the 

nanosecond (ns) rather than microsecond (µs) time scale without the introduction of any 

energy bias by monitoring the distance between the centres of masses of the ligand and the 

binding site during short classical MD simulations. In addition, metadynamics simulations
88, 

89
 were performed, primarily to check amylin bound states as predicted by the modeling and 

MD simulations, but also to model contacts with the receptor along the initial stages of the 

dissociation pathway. The CHARMM36 force field
90

 was used for all MD simulations. 

Electrostatic potential calculations were carried out using APBSmem
91

, as described 

elsewhere
40

. The HD and related metrics were used to compare the CTR structure in the 

presence and absence of RAMP1. Full details are given in Supplementary Modeling. 

 

Calculation of predicted helical propensity 

The AGADIR algorithm
92

 was used to predict the helical propensity of selected peptides at 

5
o
C and 25

o
C, at a pH of 7.4 and an ionic strength of .14 M, to reflect conditions similar to 

PBS.  

 

Data availability 

Most data generated or analysed in this study are available are included in the published 

article (or supporting information). Modeling datasets are available from the url provided in 

Supplementary Modeling. Raw data are available from corresponding authors on reasonable 

request. 
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Supporting information 

Supplementary biology 

Supplementary chemistry 

Supplementary modeling 

Six supporting movies 

 

Supplementary modeling (SM) movie legends 

 

Supporting movie SM1 

Interactions between amylin (magenta) and the ECD of CTR in complex with RAMP1, 

during a SuMD simulation (SuMD simulation time 0-16 ns ca.) and the following 

unsupervised MD (16 ns ca. - end of the simulation). Right hand panel interactively shows 

the computed interaction energy during the simulation. The receptor is shown as ribbon, with 
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key residues in stick and color-coded according to the number of contacts computed on 

overall 10 SuMD replicas: in blue are depicted residues never engaged by the peptide, while 

in red are highlighted residues frequently engaged (the colour scale is normalized on the 

residue mostly engaged). 

 

Supporting movie SM2 

Interactions between amylin (magenta) and the ECD of CTR, during one SuMD simulation 

(SuMD simulation time 0-15 ns ca.) and the following unsupervised MD (15 ns - end of the 

simulation). Right hand panel interactively shows the computed interaction energy during the 

simulation. The receptors is shown as ribbon, with key residues in stick and color-coded 

according to the number of contacts computed on overall 12 SuMD replicas: in blue are 

depicted residues never engaged by the peptide, while in red are highlighted residues 

frequently engaged (the color scale is normalized on the residue mostly engaged). 

 

Supporting movie SM3 

Interactions between AMY1 (left hand panel) or CTR (right hand panel) with amylin 

(magenta), during a 250 ns long MD replica. Receptors are shown as ribbon, with key 

residues in stick and color-coded according to the number of contacts computed on overall 

750 ns of simulations (3 MD replicas): in blue are depicted residues never engaged by the 

peptide, while in red are highlighted residues frequently engaged (the color scale is 

normalized on the residue mostly engaged). 

 

 

Supporting movie SM4 

Page 43 of 59

ACS Paragon Plus Environment

ACS Pharmacology & Translational Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



44 

 

Interactions between AMY1 (left hand panel) or CTR (right hand panel) with the N terminus 

portion of amylin (magenta), during a 250 ns long MD replica. Receptors are shown as 

ribbon, with key residues in stick and color-coded according to the number of contacts 

computed on overall 750 ns of simulations (3 MD replicas): in blue are depicted residues 

never engaged by the peptide, while in red are highlighted residues frequently engaged (the 

color scale is normalized on the residue mostly engaged). 

 

Supporting movie SM5 

Amylin (magenta) partial unbinding from AMY1 (left hand panel) or CTR (right hand panel) 

under the input of energy. Receptors are shown as ribbon, with key residues in stick and 

color-coded according to the number of contacts computed on overall 3 metadynamics 

replicas: in blue are depicted residues never engaged by the peptide, while in red are 

highlighted residues frequently engaged (the color scale is normalized on the residue mostly 

engaged). 

 

Supporting movie SM6 

Interactions between amylin Q10A mutant (magenta) and AMY1, during a 100 ns long MD 

replica. The receptor is shown as blue ribbon, with key residues in stick. 
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 Molecular signature for receptor engagement in the metabolic peptide hormone amylin 
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Swierkula, Daniel P. Raleigh, Augen A. Pioszak, Margaret A. Brimble,
 
Christopher A. 

Reynolds,
 
Christopher S. Walker, Debbie L. Hay

  

 

 

Model of amylin bound to the AMY1 receptor (calcitonin receptor/RAMP1) showing the 

importance of the amylin amide in binding and other residues within the peptide C-terminus 

that are predicted to bind the receptor extracellular domain or peptide N-terminus that are 

predicted to bind the receptor transmembrane and extracellular loops. Defining how the 

amylin peptide binds contributes to the development of novel therapeutics for metabolic 

disease. 
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