21 research outputs found
Mutations in the gene for cardiac myosin-binding protein C and late- onset familial hypertrophic cardiomyopathy
Background: Mutations in the gene for cardiac myosin-binding protein C account for approximately 15 percent of cases of familial hypertrophic cardiomyopathy. The spectrum of disease-causing mutations and the associated clinical features of these gene defects are unknown. Methods: DNA sequences encoding cardiac myosin-binding protein C were determined in unrelated patients with familial hypertrophic cardiomyopathy. Mutations were found in 16 probands, who had 574 family members at risk of inheriting these defects. The genotypes of these family members were determined, and the clinical status of 212 family members with mutations in the gene for cardiac myosin- binding protein C was assessed. Results: Twelve novel mutations were identified in probands from 16 families. Four were missense mutations; eight defects (insertions, deletions, and splice mutations) were predicted to truncate cardiac myosin-binding protein C. The clinical expression of either missense or truncation mutations was similar to that observed for other genetic causes of hypertrophic cardiomyopathy, but the age at onset of the disease differed markedly. Only 58 percent of adults under the age of 50 years who had a mutation in the cardiac myosin-binding protein C gene (68 of 117 patients) had cardiac hypertrophy disease penetrance remained incomplete through the age of 60 years. Survival was generally better than that observed among patients with hypertrophic cardiomyopathy caused by other mutations in the genes for sarcomere proteins. Most deaths due to cardiac causes in these families occurred suddenly. Conclusions: The clinical expression of mutations in the gene for cardiac myosin-binding protein C is often delayed until middle age or old age. Delayed expression of cardiac hypertrophy and a favorable clinical course may hinder recognition of the heritable nature of mutations in the cardiac myosin-binding protein C gene. Clinical screening in adult life may be warranted for members of families characterized by hypertrophic cardiomyopathy
Nanotechnology: a big revolution from the small world
Nanotechnology is a multidisciplinary field originating from the interaction of several different disciplines, such as engineering, physics, biology and chemistry. New materials and devices effectively interact with the body at molecular level, yielding a brand new range of highly selective and targeted applications designed to maximize the therapeutic efficiency while reducing the side effects. Liposomes, quantum dots, carbon nanotubes and superparamagnetic nanoparticles are among the most assessed nanotechnologies. Meanwhile, other futuristic platforms are paving the way toward a new scientific paradigm, able to deeply change the research path in the medical science. The growth of nanotechnology, driven by the dramatic advances in science and technology, clearly creates new opportunities for the development of the medical science and disease treatment in human health care. Despite the concerns and the on-going studies about their safety, nanotechnology clearly emerges as holding the promise of delivering one of the greatest breakthroughs in the history of medical scienc