89 research outputs found

    ChronoMID-Cross-modal neural networks for 3-D temporal medical imaging data.

    Get PDF
    ChronoMID-neural networks for temporally-varying, hence Chrono, Medical Imaging Data-makes the novel application of cross-modal convolutional neural networks (X-CNNs) to the medical domain. In this paper, we present multiple approaches for incorporating temporal information into X-CNNs and compare their performance in a case study on the classification of abnormal bone remodelling in mice. Previous work developing medical models has predominantly focused on either spatial or temporal aspects, but rarely both. Our models seek to unify these complementary sources of information and derive insights in a bottom-up, data-driven approach. As with many medical datasets, the case study herein exhibits deep rather than wide data; we apply various techniques, including extensive regularisation, to account for this. After training on a balanced set of approximately 70000 images, two of the models-those using difference maps from known reference points-outperformed a state-of-the-art convolutional neural network baseline by over 30pp (> 99% vs. 68.26%) on an unseen, balanced validation set comprising around 20000 images. These models are expected to perform well with sparse data sets based on both previous findings with X-CNNs and the representations of time used, which permit arbitrarily large and irregular gaps between data points. Our results highlight the importance of identifying a suitable description of time for a problem domain, as unsuitable descriptors may not only fail to improve a model, they may in fact confound it

    Automated Crystal Orientation Mapping in py4DSTEM using Sparse Correlation Matching

    Full text link
    Crystalline materials used in technological applications are often complex assemblies composed of multiple phases and differently oriented grains. Robust identification of the phases and orientation relationships from these samples is crucial, but the information extracted from the diffraction condition probed by an electron beam is often incomplete. We therefore have developed an automated crystal orientation mapping (ACOM) procedure which uses a converged electron probe to collect diffraction patterns from multiple locations across a complex sample. We provide an algorithm to determine the orientation of each diffraction pattern based on a fast sparse correlation method. We test the speed and accuracy of our method by indexing diffraction patterns generated using both kinematical and dynamical simulations. We have also measured orientation maps from an experimental dataset consisting of a complex polycrystalline twisted helical AuAgPd nanowire. From these maps we identify twin planes between adjacent grains, which may be responsible for the twisted helical structure. All of our methods are made freely available as open source code, including tutorials which can be easily adapted to perform ACOM measurements on diffraction pattern datasets.Comment: 14 pages, 7 figure

    On Dijkgraaf-Witten Type Invariants

    Get PDF
    We explicitly construct a series of lattice models based upon the gauge group ZpZ_{p} which have the property of subdivision invariance, when the coupling parameter is quantized and the field configurations are restricted to satisfy a type of mod-pp flatness condition. The simplest model of this type yields the Dijkgraaf-Witten invariant of a 33-manifold and is based upon a single link, or 11-simplex, field. Depending upon the manifold's dimension, other models may have more than one species of field variable, and these may be based on higher dimensional simplices.Comment: 18 page

    State Sum Models and Simplicial Cohomology

    Get PDF
    We study a class of subdivision invariant lattice models based on the gauge group ZpZ_{p}, with particular emphasis on the four dimensional example. This model is based upon the assignment of field variables to both the 11- and 22-dimensional simplices of the simplicial complex. The property of subdivision invariance is achieved when the coupling parameter is quantized and the field configurations are restricted to satisfy a type of mod-pp flatness condition. By explicit computation of the partition function for the manifold RP3×S1RP^{3} \times S^{1}, we establish that the theory has a quantum Hilbert space which differs from the classical one.Comment: 28 pages, Latex, ITFA-94-13, (Expanded version with two new sections

    Exfoliation of natural van der Waals heterostructures to a single unit cell thickness

    Get PDF
    Weak interlayer interactions in van der Waals crystals facilitate their mechanical exfoliation to monolayer and few-layer two-dimensional materials, which often exhibit striking physical phenomena absent in their bulk form. Here we utilize mechanical exfoliation to produce a two-dimensional form of a mineral franckeite and show that the phase segregation of chemical species into discrete layers at the sub-nanometre scale facilitates franckeite's layered structure and basal cleavage down to a single unit cell thickness. This behaviour is likely to be common in a wider family of complex minerals and could be exploited for a single-step synthesis of van der Waals heterostructures, as an alternative to artificial stacking of individual two-dimensional crystals. We demonstrate p-type electrical conductivity and remarkable electrochemical properties of the exfoliated crystals, showing promise for a range of applications, and use the density functional theory calculations of franckeite's electronic band structure to rationalize the experimental results

    National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021

    Get PDF
    We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future

    Mental health in the aged: prevalence, covariates and related neuroendocrine, cardiovascular and inflammatory factors of successful aging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although aging is accompanied by diminished functioning, many elderly individuals preserve a sense of well-being. While the concept of "successful aging" has been popular for many decades, little is known about its psycho-physiologic and endocrine underpinnings. KORA-Age is a population-based, longitudinal study designed to determine the prevalence of successfully aged men and women between 65 and 94 years old in the MONICA/KORA Augsburg cohort of randomly selected inhabitants. Specifically, we aim to identify predictors of successful aging and to elucidate bio-psychosocial mechanisms that maintain mental health and successful adaptation despite adverse experiences of life and aging.</p> <p>Methods/Design</p> <p>Components of successful aging were assessed in a telephone survey of 4,127 participants (2008-2009) enrolled in the MONICA/KORA cohort, on average, 13 years earlier. Psychosocial, somatic and behavioural predictors are used to determine factors that contribute to successful aging. An age-stratified random sub-sample (n = 1,079) participated in a personal interview where further psychological mechanisms that may underlie successful adaptation (resilience, social support, attachment) were examined. The interactions among neuroendocrine systems in the aging process are investigated by studying the cortisol/dehydroepiandrosterone-sulfate ratio, the level of insulin-like growth factor I, and oxytocin.</p> <p>Discussion</p> <p>Longitudinal determinants of successful aging can be assessed based on a follow-up of an average of 13 years. A comprehensive analysis of biological as well as physio-psychological information provides a unique opportunity to investigate relevant outcomes such as resilience and frailty in the elderly population.</p

    Science Objectives for an X-Ray Microcalorimeter Observing the Sun

    Get PDF
    We present the science case for a broadband X-ray imager with high-resolution spectroscopy, including simulations of X-ray spectral diagnostics of both active regions and solar flares. This is part of a trilogy of white papers discussing science, instrument (Bandler et al. 2010), and missions (Bookbinder et al. 2010) to exploit major advances recently made in transition-edge sensor (TES) detector technology that enable resolution better than 2 eV in an array that can handle high count rates. Combined with a modest X-ray mirror, this instrument would combine arcsecondscale imaging with high-resolution spectra over a field of view sufficiently large for the study of active regions and flares, enabling a wide range of studies such as the detection of microheating in active regions, ion-resolved velocity flows, and the presence of non-thermal electrons in hot plasmas. It would also enable more direct comparisons between solar and stellar soft X-ray spectra, a waveband in which (unusually) we currently have much better stellar data than we do of the Sun
    corecore