8 research outputs found

    Identification of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella variicola and Related Phylogroups by MALDI-TOF Mass Spectrometry

    Get PDF
    Klebsiella pneumoniae (phylogroup Kp1), one of the most problematic pathogens associated with antibiotic resistance worldwide, is phylogenetically closely related to K. quasipneumoniae [subsp. quasipneumoniae (Kp2) and subsp. similipneumoniae (Kp4)], K. variicola (Kp3) and two unnamed phylogroups (Kp5 and Kp6). Together, Kp1 to Kp6 make-up the K. pneumoniae complex. Currently, the phylogroups can be reliably identified only based on gene (or genome) sequencing. Misidentification using standard laboratory methods is common and consequently, the clinical significance of K. pneumoniae complex members is imprecisely defined. Here, we evaluated and validated the potential of MALDI-TOF mass spectrometry (MS) to discriminate K. pneumoniae complex members. We detected mass spectrometry biomarkers associated with the phylogroups, with a sensitivity and specificity ranging between 80–100% and 97–100%, respectively. Strains within phylogroups Kp1, Kp2, Kp4, and Kp5 each shared two specific peaks not observed in other phylogroups. Kp3 strains shared a peak that was only observed otherwise in Kp5. Finally, Kp6 had a diagnostic peak shared only with Kp1. Kp3 and Kp6 could therefore be identified by exclusion criteria (lacking Kp5 and Kp1-specific peaks, respectively). Further, ranked Pearson correlation clustering of spectra grouped strains according to their phylogroup. The model was tested and successfully validated using different culture media. These results demonstrate the potential of MALDI-TOF MS for precise identification of K. pneumoniae complex members. Incorporation of spectra of all K. pneumoniae complex members into reference MALDI-TOF spectra databases, in which they are currently lacking, is desirable. MALDI-TOF MS may thereby enable a better understanding of the epidemiology, ecology, and pathogenesis of members of the K. pneumoniae complex

    Description of Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and Klebsiella variicola subsp. variicola subsp. nov.

    No full text
    International audienceThe bacterial pathogen Klebsiella pneumoniae comprises several phylogenetic groups (Kp1 to Kp7), two of which (Kp5 and Kp7) have no taxonomic status. Here we show that group Kp5 is closely related to Klebsiella variicola (Kp3), with an average nucleotide identity (ANI) of 96.4%, and that group Kp7 has an ANI of 94.7% with Kp1 (K. pneumoniae sensu stricto). Biochemical characteristics and chromosomal beta-lactamase genes also distinguish groups Kp5 and Kp7 from other Klebsiella taxa. We propose the names Klebsiella africanensis for Kp7 (type strain, 200023T = CIP 111653T) and K. variicola subsp. tropicalensis for Kp5 (type strain, 1266T = CIP 111654T)

    Melioidosis in the Western Indian Ocean and the Importance of Improving Diagnosis, Surveillance, and Molecular Typing

    No full text
    Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an infectious disease of humans or animals, and the specific environmental conditions that are present in western Indian Ocean islands are particularly suitable for the establishment/survival of B. pseudomallei. Indeed, an increasing number of new cases have been reported in this region (Madagascar, Mauritius, RĂ©union (France), and Seychelles, except Comoros and Mayotte (France)), and are described in this review. Our review clearly points out that further studies are needed in order to investigate the real incidence and burden of melioidosis in the western Indian Ocean and especially Madagascar, since it is likely to be higher than currently reported. Thus, research and surveillance priorities were recommended (i) to improve awareness of melioidosis in the population and among clinicians; (ii) to improve diagnostics, in order to provide rapid and effective treatment; (iii) to implement a surveillance and reporting system in the western Indian Ocean; and (iv) to investigate the presence of B. pseudomallei in environmental samples, since we have demonstrated its presence in soil samples originating from the yard of a Madagascan case

    Characterization of Klebsiella pneumoniae isolates from a mother-child cohort in Madagascar

    No full text
    International audienceObjectives: To define characteristics of Klebsiella pneumoniae isolated from carriage and infections in mothers and their neonates belonging to a paediatric cohort in Madagascar.Methods: A total of 2000 mothers and their 2001 neonates were included. For each mother, vaginal and stool samples were collected at the birth. Additionally, upon suspicion of infection, samples were collected from suspected infected body sites in 121 neonates. Genomic sequences of all isolated K. pneumoniae were used for phylogenetic analyses and to investigate the genomic content of antimicrobial resistance genes, virulence genes and plasmid replicon types.Results: Five percent (n = 101) of mothers were K. pneumoniae positive. Of 251 collected K. pneumoniae isolates, 102 (40.6%) were from mothers and 149 (59.3%) were from neonates. A total of 49 (19.5%; all from infants except 1) isolates were from infected body sites. MLST identified 108 different STs distributed over the six K. pneumoniae phylogroups Kp1 to Kp6. We found 65 (25.8%) ESBL producers and a total of 101 (40.2%) MDR isolates. The most common ESBL gene was blaCTX-M-15 (in 99.3% of isolates expressing ESBL). One isolate co-harboured blaCTX-M-15 and blaNDM-1 genes. Three isolates from infected body sites belonged to hypervirulent-associated ST23 (n = 1) and ST25 (n = 2). We observed two cases of mother-to-child transmission and sustained K. pneumoniae carriage was identified in 10 neonates, with identical isolates observed longitudinally over the course of 18 to 115 days.Conclusions: This study revealed substantial genetic diversity and a high rate of antimicrobial resistance among K. pneumoniae isolated from both carriage and infections in Madagascar

    Characterization of Klebsiella pneumoniae isolated from patients suspected of pulmonary or bubonic plague during the Madagascar epidemic in 2017

    No full text
    International audienceKlebsiella pneumoniae can lead to a wide range of diseases including pneumonia, bloodstream and urinary tract infections. During a short period of a pulmonary plague epidemic in October 2017 in Madagascar, 12 K . pneumoniae isolates were identified in ten sputum and two buboes aspirate samples. These isolates were from 12 patients suspected of plague, without epidemiological relationships, but were negative for Yersinia pestis in culture. Data were collected from the plague national surveillance system. The isolates were characterized by antimicrobial susceptibility testing and whole-genome sequencing. Real-time PCR was performed to confirm the presence of K. pneumoniae DNA in buboes. All isolates were identified as K. pneumoniae sensu stricto. Five isolates were extended-spectrum ÎČ-lactamases producers; eleven different sequence types were identified. Five isolates belonged to known hypervirulent sequence types. Our results demonstrate community-acquired pneumonia caused by K. pneumoniae isolates in patients suspected of plague stressing the importance of bed-side differential diagnosis

    Neonatal acquisition of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the community of a low-income country (NeoLIC): Protocol for a household cohort study in Moramanga, Madagascar

    No full text
    International audienceIntroduction Data regarding the acquisition of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) in neonates at the community level are scarce in low-income and middle-income countries (LMICs), where the burden of neonatal sepsis is high. Our study aims at identifying and quantifying the role of the different routes of ESBL-PE transmission for neonates, which are still undefined in the community in LMICs. Methods and analysis In a semirural community in Madagascar, 60 mothers and their neonates will be recruited at delivery, during which a maternal stool sample and meconium of the newborn will be collected. Home visits will be planned the day of the delivery and next at days 3, 7, 14, 21 and 28. Stool samples from the newborn, the mother and every other household member will be collected at each visit, as well as samples from the environment in contact with the newborn (food, surfaces and objects). Sociodemographic data and factors which might drive ESBL-PE acquisition will also be collected. We will analyse the isolated ESBL-PE using DNA sequencing methods to characterise clones, resistance genes and plasmids of ESBL-PE. To analyse these data globally, we will develop novel analytical approaches combining mathematical modelling and statistics. Finally, mathematical simulations will be performed to test different strategies of control of ESBL-PE transmission to neonates. In complement, we will conduct an anthropological investigation to understand local environments and practices that would contribute to neonatal ESBL-PE acquisition. In-depth interviews with members of 16 households will be conducted and 4 mother-newborn pairs will be followed by a participants' observations methodology. Ethics and dissemination The study was approved by the ethical committee in Madagascar and by the institutional review board of Institut Pasteur, Paris, France. Findings will be reported to participating families, collaborators and local government; presented at national and international conferences and disseminated by peer-review publications

    Phenotypic and molecular characterisations of carbapenem-resistant Acinetobacter baumannii strains isolated in Madagascar

    No full text
    International audienceBackgroundThe present study aimed to perform a deep phenotypic and genotypic analysis of 15 clinical carbapenem-resistant Acinetobacter baumannii (CRAb) strains isolated in Madagascar between 2008 and 2016 from diverse sources.MethodsCRAb isolates collected from the Clinical Biology Centre of the Institut Pasteur of Madagascar, from the neonatal unit of Antananarivo military hospital, and from intensive care units of Mahajanga Androva and Antananarivo Joseph Ravoahangy Andrianavalona (HJRA) hospitals were subjected to susceptibility testing. Whole-genome sequencing allowed us to assess the presence of antibiotic-resistance determinants, insertion sequences, integrons, genomic islands and potential virulence factors in all strains. The structure of the carO porin gene and deduced protein (CarO) were also assessed in CRAb isolates.ResultsAll isolates were found to be multidrug-resistant strains. Antibiotic-resistance genes against six classes of antimicrobial agents were described. The four carbapenem-resistance genes: blaOXA-51 like, blaOXA-23, blaOXA-24, and blaOXA-58 genes were detected in 100, 53.3, 13.3, and 6.6% of the isolates, respectively. Additionally, an ISAba1 located upstream of blaOXA-23 and blaADC-like genes was observed in 53.3 and 66.7% of isolates, respectively. Further, Tn2006 and Tn2008 were found associated to the ISAba1-blaOXA-23 structure. An 8051-bp mobilizable plasmid harbouring the blaOXA-24 gene was isolated in two strains. In addition, 46.7% of isolates were positive for class 1 integrons. Overall, five sequences types (STs), with predominantly ST2, were detected. Several virulence genes were found in the CRAb isolates, among which two genes, epsA and ptk, responsible for the capsule-positive phenotype, were involved in A. baumannii pathogenesis.ConclusionsThis study revealed the presence of high-level carbapenem resistance in A. baumannii with the first description of OXA-24 and OXA-58 carbapenemases in Madagascar. This highlights the importance of better monitoring and controlling CRAb in Madagascan hospitals to avoid their spread

    Klebsiella pneumoniae carriage in low-income countries: antimicrobial resistance, genomic diversity and risk factors

    No full text
    The genomic sequencing data were deposited in the NCBI/ENA/DDBJ databases and are accessible via the BioProject PRJEB29143International audienceKlebsiella pneumoniae (hereafter, Kp) is a major public health threat responsible for high levels of multidrug resistant (MDR) human infections. Besides, Kp also causes severe infections in the community, especially in Asia and Africa. Although most Kp infections are caused by endogenous intestinal carriage, little is known about the prevalence and microbiological characteristics of Kp in asymptomatic human carriage, and attached risk factors including environmental sources exposure. Here, 911 pregnant women from communities in Madagascar, Cambodia, and Senegal were screened for gut colonization by Kp. Characteristics of Kp strains (antimicrobial susceptibility, genomic diversity, virulence, and resistance genes) were defined, and associated risk factors were investigated.Kp carriage rate was 55.9%, and Kp populations were highly heterogeneous (6 phylogroups, 325 sequence types, Simpson index 99.6%). One third of Kp isolates had acquired antimicrobial resistance genes. MDR-Kp (11.7% to 39.7%) and extended spectrum beta-lactamase (ESBL)-producing Kp (0.7% to 14.7%) varied among countries. Isolates with virulence genes were detected (14.5%). Environmental exposure factors including food, animal contacts, or hospitalization of household members were associated with carriage of Kp, antimicrobial resistance and hypervirulence. However, risk factors were country-specific and Kp subpopulation-specific.This large-scale multicenter study uncovers the huge diversity of Kp in human gut carriage, demonstrates that antimicrobial resistance is widespread in communities of three low-income countries, and underlines the challenges posed by Kp colonization to the control of antimicrobia
    corecore