91 research outputs found

    Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator

    Full text link
    Sensitive transduction of the motion of a microscale cantilever is central to many applications in mass, force, magnetic resonance, and displacement sensing. Reducing cantilever size to nanoscale dimensions can improve the bandwidth and sensitivity of techniques like atomic force microscopy, but current optical transduction methods suffer when the cantilever is small compared to the achievable spot size. Here, we demonstrate sensitive optical transduction in a monolithic cavity-optomechanical system in which a sub-picogram silicon cantilever with a sharp probe tip is separated from a microdisk optical resonator by a nanoscale gap. High quality factor (Q ~ 10^5) microdisk optical modes transduce the cantilever's MHz frequency thermally-driven vibrations with a displacement sensitivity of ~ 4.4x10^-16 m\sqrt[2]{Hz} and bandwidth > 1 GHz, and a dynamic range > 10^6 is estimated for a 1 s measurement. Optically-induced stiffening due to the strong optomechanical interaction is observed, and engineering of probe dynamics through cantilever design and electrostatic actuation is illustrated

    A circular dielectric grating for vertical extraction of single quantum dot emission

    Get PDF
    We demonstrate a nanostructure composed of partially etched annular trenches in a suspended GaAs membrane, designed for efficient and moderately broadband (approx. 5 nm) emission extraction from single InAs quantum dots. Simulations indicate that a dipole embedded in the nanostructure center radiates upwards into free space with a nearly Gaussian far-field, allowing a collection efficiency > 80 % with a high numerical aperture (NA=0.7) optic, and with 12X Purcell radiative rate enhancement. Fabricated devices exhibit an approx. 10 % photon collection efficiency with a NA=0.42 objective, a 20X improvement over quantum dots in unpatterned GaAs. A fourfold exciton lifetime reduction indicates moderate Purcell enhancement.Comment: (3 pages

    Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler

    Get PDF
    We demonstrate a spectrally broadband and effcient technique for collecting photoluminescence from a single InAs quantum dot directly into a standard single mode optical fiber. In this approach, an optical fiber taper waveguide is placed in contact with a suspended GaAs nanophotonic waveguide with embedded quantum dots, forming an effcient and broadband directional coupler with standard optical fiber input and output. Effcient photoluminescence collection over a wavelength range of tens of nanometers is demonstrated, and a maximum collection effciency of 6.05 % (corresponding single photon rate of 3.0 MHz) into a single mode optical fiber was estimated for a single quantum dot exciton

    Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system

    Full text link
    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 9090 times larger than that of the coolant atom. Here we use ultracold atoms to sympathetically cool the vibrations of a Si3_3N4_4 nanomembrane, whose mass exceeds that of the atomic ensemble by a factor of 101010^{10}. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650±230650\pm 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. Our scheme enables ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.Comment: 11 pages, 4 figure

    Spectroscopy of mechanical dissipation in micro-mechanical membranes

    Get PDF
    We measure the frequency dependence of the mechanical quality factor (Q) of SiN membrane oscillators and observe a resonant variation of Q by more than two orders of magnitude. The frequency of the fundamental mechanical mode is tuned reversibly by up to 40% through local heating with a laser. Several distinct resonances in Q are observed that can be explained by coupling to membrane frame modes. Away from the resonances, the background Q is independent of frequency and temperature in the measured range.Comment: 4 pages, 5 figure

    Long Distance Coupling of a Quantum Mechanical Oscillator to the Internal States of an Atomic Ensemble

    Get PDF
    We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows to couple the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.Comment: 14 pages, 5 figure

    Two-photon interference using background-free quantum frequency conversion of single photons from a semiconductor quantum dot

    Full text link
    We show that quantum frequency conversion (QFC) can overcome the spectral distinguishability common to inhomogeneously broadened solid-state quantum emitters. QFC is implemented by combining single photons from an InAs quantum dot (QD) at 980 nm with a 1550 nm pump laser in a periodically-poled lithium niobate (PPLN) waveguide to generate photons at 600 nm with a signal-to-background ratio exceeding 100:1. Photon correlation and two-photon interference measurements confirm that both the single photon character and wavepacket interference of individual QD states are preserved during frequency conversion. Finally, we convert two spectrally separate QD transitions to the same wavelength in a single PPLN waveguide and show that the resulting field exhibits non-classical two-photon interference.Comment: Supercedes arXiv:1205.221
    corecore