671 research outputs found
Bitstream-based video quality modeling and analysis of HTTP-based adaptive streaming
Die Verbreitung erschwinglicher Videoaufnahmetechnologie und verbesserte Internetbandbreiten ermöglichen das Streaming von hochwertigen Videos (Auflösungen > 1080p, Bildwiederholraten ≥ 60fps) online. HTTP-basiertes adaptives Streaming ist die bevorzugte Methode zum Streamen von Videos, bei der Videoparameter an die verfügbare Bandbreite angepasst wird, was sich auf die Videoqualität auswirkt. Adaptives Streaming reduziert Videowiedergabeunterbrechnungen aufgrund geringer Netzwerkbandbreite, wirken sich jedoch auf die wahrgenommene Qualität aus, weswegen eine systematische Bewertung dieser notwendig ist. Diese Bewertung erfolgt üblicherweise für kurze Abschnitte von wenige Sekunden und während einer Sitzung (bis zu mehreren Minuten). Diese Arbeit untersucht beide Aspekte mithilfe perzeptiver und instrumenteller Methoden. Die perzeptive Bewertung der kurzfristigen Videoqualität umfasst eine Reihe von Labortests, die in frei verfügbaren Datensätzen publiziert wurden. Die Qualität von längeren Sitzungen wurde in Labortests mit menschlichen Betrachtern bewertet, die reale Betrachtungsszenarien simulieren. Die Methodik wurde zusätzlich außerhalb des Labors für die Bewertung der kurzfristigen Videoqualität und der Gesamtqualität untersucht, um alternative Ansätze für die perzeptive Qualitätsbewertung zu erforschen. Die instrumentelle Qualitätsevaluierung wurde anhand von bitstrom- und hybriden pixelbasierten Videoqualitätsmodellen durchgeführt, die im Zuge dieser Arbeit entwickelt wurden. Dazu wurde die Modellreihe AVQBits entwickelt, die auf den Labortestergebnissen basieren. Es wurden vier verschiedene Modellvarianten von AVQBits mit verschiedenen Inputinformationen erstellt: Mode 3, Mode 1, Mode 0 und Hybrid Mode 0. Die Modellvarianten wurden untersucht und schneiden besser oder gleichwertig zu anderen aktuellen Modellen ab. Diese Modelle wurden auch auf 360°- und Gaming-Videos, HFR-Inhalte und Bilder angewendet. Darüber hinaus wird ein Langzeitintegrationsmodell (1 - 5 Minuten) auf der Grundlage des ITU-T-P.1203.3-Modells präsentiert, das die verschiedenen Varianten von AVQBits mit sekündigen Qualitätswerten als Videoqualitätskomponente des vorgeschlagenen Langzeitintegrationsmodells verwendet. Alle AVQBits-Varianten, das Langzeitintegrationsmodul und die perzeptiven Testdaten wurden frei zugänglich gemacht, um weitere Forschung zu ermöglichen.The pervasion of affordable capture technology and increased internet bandwidth allows high-quality videos (resolutions > 1080p, framerates ≥ 60fps) to be streamed online. HTTP-based adaptive streaming is the preferred method for streaming videos, adjusting video quality based on available bandwidth. Although adaptive streaming reduces the occurrences of video playout being stopped (called “stalling”) due to narrow network bandwidth, the automatic adaptation has an impact on the quality perceived by the user, which results in the need to systematically assess the perceived quality. Such an evaluation is usually done on a short-term (few seconds) and overall session basis (up to several minutes). In this thesis, both these aspects are assessed using subjective and instrumental methods. The subjective assessment of short-term video quality consists of a series of lab-based video quality tests that have resulted in publicly available datasets. The overall integral quality was subjectively assessed in lab tests with human viewers mimicking a real-life viewing scenario. In addition to the lab tests, the out-of-the-lab test method was investigated for both short-term video quality and overall session quality assessment to explore the possibility of alternative approaches for subjective quality assessment. The instrumental method of quality evaluation was addressed in terms of bitstream- and hybrid pixel-based video quality models developed as part of this thesis. For this, a family of models, namely AVQBits has been conceived using the results of the lab tests as ground truth. Based on the available input information, four different instances of AVQBits, that is, a Mode 3, a Mode 1, a Mode 0, and a Hybrid Mode 0 model are presented. The model instances have been evaluated and they perform better or on par with other state-of-the-art models. These models have further been applied to 360° and gaming videos, HFR content, and images. Also, a long-term integration (1 - 5 mins) model based on the ITU-T P.1203.3 model is presented. In this work, the different instances of AVQBits with the per-1-sec scores output are employed as the video quality component of the proposed long-term integration model. All AVQBits variants as well as the long-term integration module and the subjective test data are made publicly available for further research
Fire Safety Analysis of a Railway Compartment using Computational Fluid Dynamics
Trains are considered to be the safest on-land transportation means for both passengers and cargo. Train accidents have been mainly disastrous, especially in case of fire, where the consequences are extensive loss of life and goods. The fire would generate smoke and heat which would spread quickly inside the railway compartments. Both heat and smoke are the primary reasons of casualties in a train. This study has been carried out to perform numerical analysis of fire characteristics in a railway compartment using commercial Computational Fluid Dynamics code ANSYS. Non-premixed combustion model has been used to simulate a fire scenario within a railway compartment, while Shear Stress Transport k-ω turbulence model has been used to accurately predict the hot air turbulence parameters within the compartment. The walls of the compartment have been modelled as no-slip stationary adiabatic walls, as is observed in real life conditions. Carbon dioxide concentration (CO2), temperature distribution and air flow velocity within the railway compartment has been monitored. It has been observed that the smoke above the fire source flows to both sides of the compartment. The highest temperature zone is located downstream the fire source, and gradually decreases with the increase in the distance from the fire source. It can be seen that CFD can be used as an effective tool in order to analyse the evolution of fire in railway compartments with reasonable accuracy. The paper also briefly discusses the topical reliability issues
Changes in the electronic structure and properties of graphene induced by molecular charge-transfer
Interaction with electron donor and acceptor molecules such as aniline and
nitrobenzene brings about marked changes in the Raman spectrum and the
electronic structure of graphene, prepared by the exfoliation of graphitic
oxide.Comment: 13 pages, 4 figure
The effects of rotational flow, viscosity, thickness, and shape on transonic flutter dip phenomena
The transonic flutter dip phenomena on thin airfoils, which are employed for propfan blades, is investigated using an integrated Euler/Navier-Stokes code and a two degrees of freedom typical section structural model. As a part of the code validation, the flutter characteristics of the NACA 64A010 airfoil are also investigated. In addition, the effects of artificial dissipation models, rotational flow, initial conditions, mean angle of attack, viscosity, airfoil thickness and shape on flutter are investigated. The results obtained with a Euler code for the NACA 64A010 airfoil are in reasonable agreement with published results obtained by using transonic small disturbance and Euler codes. The two artificial dissipation models, one based on the local pressure gradient scaled by a common factor and the other based on the local pressure gradient scaled by a spectral radius, predicted the same flutter speeds except in the recovery region for the case studied. The effects of rotational flow, initial conditions, mean angle of attack, and viscosity for the Reynold's number studied seem to be negligible or small on the minima of the flutter dip
AVQBits-adaptive video quality model based on bitstream information for various video applications
The paper presents AVQBits, a versatile, bitstream-based video quality model. It can be applied in several contexts such as video service monitoring, evaluation of video encoding quality, of gaming video QoE, and even of omnidirectional video quality. In the paper, it is shown that AVQBits predictions closely match video quality ratings obained in various subjective tests with human viewers, for videos up to 4K-UHD resolution (Ultra-High Definition, 3840 x 2180 pixels) and framerates up 120 fps. With the different variants of AVQBits presented in the paper, video quality can be monitored either at the client side, in the network or directly after encoding. The no-reference AVQBits model was developed for different video services and types of input data, reflecting the increasing popularity of Video-on-Demand services and widespread use of HTTP-based adaptive streaming. At its core, AVQBits encompasses the standardized ITU-T P.1204.3 model, with further model instances that can either have restricted or extended input information, depending on the application context. Four different instances of AVQBits are presented, that is, a Mode 3 model with full access to the bitstream, a Mode 0 variant using only metadata such as codec type, framerate, resoution and bitrate as input, a Mode 1 model using Mode 0 information and frame-type and -size information, and a Hybrid Mode 0 model that is based on Mode 0 metadata and the decoded video pixel information. The models are trained on the authors’ own AVT-PNATS-UHD-1 dataset described in the paper. All models show a highly competitive performance by using AVT-VQDB-UHD-1 as validation dataset, e.g., with the Mode 0 variant yielding a value of 0.890 Pearson Correlation, the Mode 1 model of 0.901, the hybrid no-reference mode 0 model of 0.928 and the model with full bitstream access of 0.942. In addition, all four AVQBits variants are evaluated when applying them out-of-the-box to different media formats such as 360° video, high framerate (HFR) content, or gaming videos. The analysis shows that the ITU-T P.1204.3 and Hybrid Mode 0 instances of AVQBits for the considered use-cases either perform on par with or better than even state-of-the-art full reference, pixel-based models. Furthermore, it is shown that the proposed Mode 0 and Mode 1 variants outperform commonly used no-reference models for the different application scopes. Also, a long-term integration model based on the standardized ITU-T P.1203.3 is presented to estimate ratings of overall audiovisual streaming Quality of Experience (QoE) for sessions of 30 s up to 5 min duration. In the paper, the AVQBits instances with their per-1-sec score output are evaluated as the video quality component of the proposed long-term integration model. All AVQBits variants as well as the long-term integration module are made publicly available for the community for further research
Charge-transfer with graphene and nanotubes
Charge-transfer between electron–donor and –acceptor molecules is a widely studied subject of great chemical interest. Some of the charge-transfer compounds in solid state exhibit novel electronic properties. In the last two to three years, occurrence of molecular charge-transfer involving single-walled carbon nanotubes (SWNTs) and graphene has been demonstrated. This interaction gives rise to significant changes in the electronic properties of these nanocarbons. We examine charge-transfer phenomenon in graphene and SWNTs in this article in view of its potential utility in device applications
Parental factors associated with the decision to participate in a neonatal clinical trial
Importance: It remains poorly understood how parents decide whether to enroll a child in a neonatal clinical trial. This is particularly true for parents from racial or ethnic minority populations. Understanding factors associated with enrollment decisions may improve recruitment processes for families, increase enrollment rates, and decrease disparities in research participation.
Objective: To assess differences in parental factors between parents who enrolled their infant and those who declined enrollment for a neonatal randomized clinical trial.
Design, Setting, and Participants: This survey study conducted from July 2017 to October 2019 in 12 US level 3 and 4 neonatal intensive care units included parents of infants who enrolled in the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) trial or who were eligible but declined enrollment. Data were analyzed October 2019 through July 2020.
Exposure: Parental choice of enrollment in neonatal clinical trial.
Main Outcomes and Measures: Percentages and odds ratios (ORs) of parent participation as categorized by demographic characteristics, self-assessment of child\u27s medical condition, study comprehension, and trust in medical researchers. Survey questions were based on the hypothesis that parents who enrolled their infant in HEAL differ from those who declined enrollment across 4 categories: (1) infant characteristics and parental demographic characteristics, (2) perception of infant\u27s illness, (3) study comprehension, and (4) trust in clinicians and researchers.
Results: Of a total 387 eligible parents, 269 (69.5%) completed the survey and were included in analysis. This included 183 of 242 (75.6%) of HEAL-enrolled and 86 of 145 (59.3%) of HEAL-declined parents. Parents who enrolled their infant had lower rates of Medicaid participation (74 [41.1%] vs 47 [55.3%]; P = .04) and higher rates of annual income greater than $55 000 (94 [52.8%] vs 30 [37.5%]; P = .03) compared with those who declined. Black parents had lower enrollment rates compared with White parents (OR, 0.35; 95% CI, 0.17-0.73). Parents who reported their infant\u27s medical condition as more serious had higher enrollment rates (OR, 5.7; 95% CI, 2.0-16.3). Parents who enrolled their infant reported higher trust in medical researchers compared with parents who declined (mean [SD] difference, 5.3 [0.3-10.3]). There was no association between study comprehension and enrollment.
Conclusions and Relevance: In this study, the following factors were associated with neonatal clinical trial enrollment: demographic characteristics (ie, race/ethnicity, Medicaid status, and reported income), perception of illness, and trust in medical researchers. Future work to confirm these findings and explore the reasons behind them may lead to strategies for better engaging underrepresented groups in neonatal clinical research to reduce enrollment disparities
An Investigation on Ventilation Air Distribution within Rectangular and Circular Enclosures
One of the important parameters that dictate the effectiveness of ventilation system is air change rate. The air change rate provides overall effectiveness of ventilation in an enclosed space and it needs to be examined with age of air particles to decide about overall effectiveness. Age of air particles is the time air at a location spends inside the enclosure and hence provides useful information about presence of secondary flows. A range of tools have been used to predict local and global effectiveness of a typical ventilation system for a specific work environment. Computational fluid dynamics has proven to be an effective tool in this regard. The present work highlights various issues needed to keep in consideration while designing meeting rooms in busy manufacturing environments. Two meeting room configurations have been proposed and ventilation requirements for these enclosures have been estimated. Furthermore for two different fan configurations, interior enclosure conditions have been predicted
Head position change is not associated with acute changes in bilateral cerebral oxygenation in stable preterm infants during the first 3 days of life
OBJECTIVE: Several recent intraventricular hemorrhage prevention bundles include midline head positioning to prevent potential disturbances in cerebral hemodynamics. We aimed to study the impact of head position change on regional cerebral saturations (SctO2) in preterm infants (< 30 weeks GA) during the first three days of life. STUDY DESIGN: Bilateral SctO2 was measured by near infrared spectroscopy. The infant's head was turned sequentially to each side from midline (baseline) in thirty-minute intervals while keeping the body supine. Bilateral SctO2 before and after each position change were compared using paired t-test. RESULTS: In relatively stable preterm infants (gestational age 26.5±1.7 weeks, birth weight 930±220g; n=20), bilateral SctO2 remained within normal range (71.1% - 75.3%) when the head was turned from midline position to either side. CONCLUSION: Stable preterm infants tolerated brief changes in head position from midline without significant alternation in bilateral SctO2; the impact on critically ill infants needs further evaluation
- …