2,369 research outputs found

    Simulation of unsteady rotational flow over propfan configuration

    Get PDF
    During the past decade, aircraft engine manufacturers and scientists at NASA have worked on extending the high propulsive efficiency of a classical propeller to higher cruise Mach numbers. The resulting configurations use highly swept twisted and very thin blades to delay the drag divergence Mach number. Unfortunately, these blades are also susceptible to aeroelastic instabilities. This was observed for some advanced propeller configurations in wind tunnel tests at NASA Lewis Research Center, where the blades fluttered at cruise speeds. To address this problem and to understand the flow phenomena and the solid fluid interaction involved, a research effort was initiated at Georgia Institute of Technology in 1986, under the support of the Structural Dynamics Branch of the NASA Lewis Research Center. The objectives of this study are: (1) the development of solution procedures and computer codes capable of predicting the aeroelastic characteristics of modern single and counter-rotation propellers; and (2) the use of these solution procedures to understand physical phenomena such as stall flutter, transonic flutter, and divergence

    Missing Shapiro steps and the 8Ï€8\pi-periodic Josephson effect in interacting helical electron systems

    Get PDF
    Two-particle backscattering in time-reversal invariant interacting helical electron systems can lead to the formation of quasiparticles with charge e/2e/2. We propose a way to detect such states by means of the Josephson effect in the presence of proximity-induced superconductivity. In this case, the existence of e/2e/2 charges leads to an 8Ï€8 \pi-periodic component of the Josephson current which can be identified through measurement of Shapiro steps in Josephson junctions. In particular, we show that even when there is weak explicit time-reversal symmetry breaking, which causes the two-particle backscattering to be a sub-leading effect at low energies, its presence can still be detected in driven, current-biased Shapiro step measurements. The disappearance of some of these steps as a function of the drive frequency is directly related to the existence of non-Abelian zero-energy states. We suggest that this effect can be measured in current state-of-the-art Rashba wires.Comment: 9 pages, 5 figures. A new submission extending and expanding our analysis in arXiv:1507.08881. (v2) References adde

    Dynamic response functions and helical gaps in interacting Rashba nanowires with and without magnetic fields

    Get PDF
    A partially gapped spectrum due to the application of a magnetic field is one of the main probes of Rashba spin-orbit coupling in nanowires. Such a "helical gap" manifests itself in the linear conductance, as well as in dynamic response functions such as the spectral function, the structure factor, or the tunnelling density of states. In this paper, we investigate theoretically the signature of the helical gap in these observables with a particular focus on the interplay between Rashba spin-orbit coupling and electron-electron interactions. We show that in a quasi-one-dimensional wire, interactions can open a helical gap even without magnetic field. We calculate the dynamic response functions using bosonization, a renormalization group analysis, and the exact form factors of the emerging sine-Gordon model. For special interaction strengths, we verify our results by refermionization. We show how the two types of helical gaps, caused by magnetic fields or interactions, can be distinguished in experiments.Comment: 15 pages, 7 figures, v2 refs adde

    Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Full text link
    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.Comment: 11 pages, 9 figures, v3 with added reference

    Recurrence Relations

    Get PDF
    The main aim of the paper is to obtain some recurrence relations for the generalized H-function of two variables
    • …
    corecore