273 research outputs found

    Anomalous density fluctuations in a strange metal.

    Get PDF
    A central mystery in high-temperature superconductivity is the origin of the so-called strange metal (i.e., the anomalous conductor from which superconductivity emerges at low temperature). Measuring the dynamic charge response of the copper oxides, [Formula: see text], would directly reveal the collective properties of the strange metal, but it has never been possible to measure this quantity with millielectronvolt resolution. Here, we present a measurement of [Formula: see text] for a cuprate, optimally doped Bi2.1Sr1.9CaCu2O8+x (Tc = 91 K), using momentum-resolved inelastic electron scattering. In the medium energy range 0.1-2 eV relevant to the strange metal, the spectra are dominated by a featureless, temperature- and momentum-independent continuum persisting to the electronvolt energy scale. This continuum displays a simple power-law form, exhibiting q2 behavior at low energy and q2/Ο‰2 behavior at high energy. Measurements of an overdoped crystal (Tc = 50 K) showed the emergence of a gap-like feature at low temperature, indicating deviation from power law form outside the strange-metal regime. Our study suggests the strange metal exhibits a new type of charge dynamics in which excitations are local to such a degree that space and time axes are decoupled

    Hydrogen ion dynamics and the Na+/H+ exchanger in cancer angiogenesis and antiangiogenesis

    Get PDF
    Tumour angiogenesis and cellular pH regulation, mainly represented by Na+/H+ antiporter exchange, have been heretofore considered unrelated subfields of cancer research. In this short review, the available experimental evidence relating these areas of modern cancer research is introduced. This perspective also helps to design a new approach that facilitates the opening and development of novel research lines oriented towards a rational incorporation of anticancer drugs into more selective and less toxic therapeutic protocols. The final aim of these efforts is to control cancer progression and dissemination through the control of tumour angiogenesis. Finally, different antiangiogenic drugs that can already be clinically used to this effect are briefly presented

    Azimuthal Anisotropy of Photon and Charged Particle Emission in Pb+Pb Collisions at 158 A GeV/c

    Full text link
    The azimuthal distributions of photons and charged particles with respect to the event plane are investigated as a function of centrality in Pb + Pb collisions at 158 A GeV/c in the WA98 experiment at the CERN SPS. The anisotropy of the azimuthal distributions is characterized using a Fourier analysis. For both the photon and charged particle distributions the first two Fourier coefficients are observed to decrease with increasing centrality. The observed anisotropies of the photon distributions compare well with the expectations from the charged particle measurements for all centralities.Comment: 8 pages and 6 figures. The manuscript has undergone a major revision. The unwanted correlations were enhanced in the random subdivision method used in the earlier version. The present version uses the more established method of division into subevents separated in rapidity to minimise short range correlations. The observed results for charged particles are in agreement with results from the other experiments. The observed anisotropy in photons is explained using flow results of pions and the correlations arising due to the decay of the neutral pion

    Multiplicity Distributions and Charged-neutral Fluctuations

    Get PDF
    Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity fluctuations, and charged-neutral fluctuations in 158β‹…A\cdot A GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as Npart1.07Β±0.05N_{part}^{1.07\pm 0.05} and photons as Npart1.12Β±0.03N_{part}^{1.12\pm 0.03} have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral fluctuation indicates a model-independent demonstration of non-statistical fluctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics (ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in Pramana, Journal of Physic

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    A Novel Mechanism of Transposon-Mediated Gene Activation

    Get PDF
    Transposable Insertion Sequences (IS elements) have been shown to provide various benefits to their hosts via gene activation or inactivation under stress conditions by appropriately inserting into specific chromosomal sites. Activation is usually due to derepression or introduction of a complete or partial promoter located within the element. Here we define a novel mechanism of gene activation by the transposon IS5 in Escherichia coli. The glycerol utilization operon, glpFK, that is silent in the absence of the cAMP-Crp complex, is activated by IS5 when inserted upstream of its promoter. High-level expression is nearly constitutive, only mildly dependent on glycerol, glucose, GlpR, and Crp, and allows growth at a rate similar to or more rapid than that of wild-type cells. Expression is from the glpFK promoter and dependent on (1) the DNA phase, (2) integration host factor (IHF), and (3) a short region at the 3β€² end of IS5 harboring a permanent bend and an IHF binding site. The lacZYA operon is also subject to such activation in the absence of Crp. Thus, we have defined a novel mechanism of gene activation involving transposon insertion that may be generally applicable to many organisms

    A Novel Human Cytomegalovirus Locus Modulates Cell Type-Specific Outcomes of Infection

    Get PDF
    Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULbβ€² that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULbβ€²-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULbβ€² sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2RΞ³cnull-humanized mouse model. The UL133-UL138NULL virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations

    Delineation of VEGF-regulated genes and functions in the cervix of pregnant rodents by DNA microarray analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>VEGF-regulated genes in the cervices of pregnant and non-pregnant rodents (rats and mice) were delineated by DNA microarray and Real Time PCR, after locally altering levels of or action of VEGF using VEGF agents, namely siRNA, VEGF receptor antagonist and mouse VEGF recombinant protein.</p> <p>Methods</p> <p>Tissues were analyzed by genome-wide DNA microarray analysis, Real-time and gel-based PCR, and SEM, to decipher VEGF function during cervical remodeling. Data were analyzed by EASE score (microarray) and ANOVA (Real Time PCR) followed by Scheffe's <it>F</it>-test for multiple comparisons.</p> <p>Results</p> <p>Of the 30,000 genes analyzed, about 4,200 genes were altered in expression by VEGF, i.e., expression of about 2,400 and 1,700 genes were down- and up-regulated, respectively. Based on EASE score, i.e., grouping of genes according to their biological process, cell component and molecular functions, a number of vascular- and non-vascular-related processes were found to be regulated by VEGF in the cervix, including immune response (including inflammatory), cell proliferation, protein kinase activity, and cell adhesion molecule activity. Of interest, mRNA levels of a select group of genes, known to or with potential to influence cervical remodeling were altered. For example, real time PCR analysis showed that levels of VCAM-1, a key molecule in leukocyte recruitment, endothelial adhesion, and subsequent trans-endothelial migration, were elevated about 10 folds by VEGF. Further, VEGF agents also altered mRNA levels of decorin, which is involved in cervical collagen fibrillogenesis, and expression of eNO, PLC and PKC mRNA, critical downstream mediators of VEGF. Of note, we show that VEGF may regulate cervical epithelial proliferation, as revealed by SEM.</p> <p>Conclusion</p> <p>These data are important in that they shed new insights in VEGF's possible roles and mechanisms in cervical events near-term, including cervical remodeling.</p

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (ο»Ώrs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (ο»Ώrs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (ο»Ώrs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk
    • …
    corecore