168 research outputs found

    Studies on pollen morphology of Ipomoea species (Convolvulaceae)

    Get PDF
    Pollen morphology of four species of Ipomoea viz., Ipomoea fistulosa (Mart. exChoisy), I. palmata Forssk, I. quamoclit L. and I. triloba L. (Convolvulaceae) from Sant Gadge Baba Amravati University Campus have been examined by Light and Scanning Electron Microscope (SEM). Pollen grains are usually pantoporate, radially symmetrical ,circular in outline, tectum echinate, circular aperture between the spine, suboblate-oblate spheroidal or spheroidal. Among the four species of Ipomoea maximum pollen size(97.39-100.86μm) across was found in I. quamoclit whereas, minimum pollen size (59.17-65.75 μm) across was noted in I. palmata. The maximum spine length (8-14μm) was recorded in I. palmata, while it was minimum (4.99-7.33μm) in I. triloba. Considering pore size all four species of Ipomoea showed close similarities with minor differences. Sculpturing pattern was found to be uniform in all studied species of Ipomoea

    A review of significant aspects contributing to curriculum development

    Get PDF
    Curriculum is an essentially signified foundation of an academic arena. The master key of the treasure curriculum is anchored in its development. The basic and progressive aspects are the prominent spectrums of curriculum in navigating the stakeholders. Empowerment of curriculum by augmenting its development has been a topic of ongoing discussion in the enrichment of the educational field. By reviewing selected past and present relevant articles, this review article is aimed to provoke and fortify insights for the due perfection, systematization, and standardization in the futuristic aspects towards curriculum development. This is a sincere effort to present the versatile role of the concept of curriculum development and validate its significant aspects by keeping the various stakeholders in mind. It is hoped that this article would help motivate elder and newer generations of curriculum developers, academicians and researchers for expounding the process, for recognizing the intrinsic and upcoming challenges in the field of curriculum development for recognizing needs to refresh, update technology and upgrade pedagogics, for standardizing curriculum at the global application and for instigating an urge to research various aspects of this topic to bring in the due change, advancement and standardization

    A comparative study of the dry and wet nano-scale electro-machining

    Get PDF
    In recent years, a nano-electromachining (nano-EM) process based on a scanning tunneling microscope (STM) platform has been demonstrated. Nano-EM is capable of machining nano-features, under both, liquid dielectric (wet nano-EM) and air dielectric (dry nano-EM) media. The objective of this paper is to present a comparative study between the wet and dry nano-EM processes based on process mechanism, machining performance, consistency and dimensional repeatability of these two processes. The comparison of the two processes has been conducted at near field nano-EM, where the gap between the tool electrode and workpiece is 2 nm and the machining is performed at room temperature and pressure (macroscopically). The major differences in the process mechanism are due to the media at dielectric interface, the breakdown field strength and breakdown characteristics of two dielectrics and therefore, the material removal mechanism. It is reported that the material removal mechanism of wet nano-EM is associated with field emission-assisted avalanche in nano-confined liquid dielectric, whereas, the material removal mechanism in dry nano-EM is associated with field-induced evaporation of material. The differences have also been observed in the machining performance, dimensions of the machined features and repeatability of the nanoscale machined features. The self-tip-sharpening process with the continuation of machining has added several advantages to dry nano-EM over wet nano-EM in terms of dimensions of the nanoscale features, repeatability and machining performance

    Irrigation application efficiency and uniformity of water distribution using multi-outlet pipe and resource conservation technologies

    Get PDF
    Irrigation experiments were conducted during November to April under wheat crop in the winter season of 2012-13 and 2013-14 in the farmer’s field at Galibkhedi village located in Karnal District, Haryana State, India. In the study, collapsible multi-outlet pipe (MOP) along with single outlets pipe (SOP) was tested in farmer’s field under wheat cultivation. Irrigation was carried out in five treatments including tillage (T) with SOP and MOP; zero-tillage (ZT) with SOP and MOP, and furrow irrigation with raised bed (FIRB). Iso-time profile of waterfront spreading and advance indicated that irrigation water distribution was uniform under the plot irrigated using MOP as compared to plot irrigated using SOP. In addition, water distribution was uniform under zero tilled plots as compared to tilled plot. Results implied that MOP has several advantages over SOP in terms of application efficiency (AE) and uniformity of water distribution. Average application efficiency for the first study year was found to be in the order of ZT-MOP (82.41%) > FIRB (76.79%) > ZT-SOP (75.25%) > T-MOP (74.85%) > T-SOP (69.79%). Average application efficiency for the second study year was found to be in the same order as first year with some deviation in values. In the second year values of mean application efficiencies were ZT-MOP (82.58%) > FIRB (77.13%) > ZT-SOP (73.04%) > T-MOP (69.65%) > T-SOP (66.13%). Overall, this study concludes that irrigation under wheat crop using collapsible multi-outlet pipe (MOP) with zero tillage practices is a suitable option for surface irrigation that accomplishes uniform distribution of water with higher application efficiency

    Design of an electrochemical micromachining machine

    Get PDF
    Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)

    Improving drought tolerance in rice: Ensuring food security through multi‐dimensional approaches

    Get PDF
    Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C 3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physi- ological adaptations, omics, transgenic and molecular breeding approaches succes- sively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress- tolerant rice

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing
    • …
    corecore