89 research outputs found

    Pupil dilation as an implicit measure of appetitive Pavlovian learning

    Get PDF
    Appetitive Pavlovian conditioning is a learning mechanism of fundamental biological and pathophysiological significance. Nonetheless, its exploration in humans remains sparse, which is partly attributed to the lack of an established psychophysiological parameter that aptly represents conditioned responding. This study evaluated pupil diameter and other ocular response measures (gaze dwelling time, blink duration and count) as indices of conditioning. Additionally, a learning model was used to infer participants' learning progress on the basis of their pupil dilation. Twenty-nine healthy volunteers completed an appetitive differential delay conditioning paradigm with a primary reward, while the ocular response measures along with other psychophysiological (heart rate, electrodermal activity, postauricular and eyeblink reflex) and behavioral (ratings, contingency awareness) parameters were obtained to examine the relation among different measures. A significantly stronger increase in pupil diameter, longer gaze duration and shorter eyeblink duration was observed in response to the reward-predicting cue compared to the control cue. The Pearce-Hall attention model best predicted the trial-by-trial pupil diameter. This conditioned response was corroborated by a pronounced heart rate deceleration to the reward-predicting cue, while no conditioning effect was observed in the electrodermal activity or startle responses. There was no discernible correlation between the psychophysiological response measures. These results highlight the potential value of ocular response measures as sensitive indices for representing appetitive conditioning

    Household Contamination with Salmonella enterica1

    Get PDF
    Household contamination with Salmonella enterica increases when occupational exposure exists (cattle farms with known salmonellosis in cattle, a salmonella research laboratory, or a veterinary clinic experiencing an outbreak of salmonellosis). Fifteen of 55 (27.2%) vacuum cleaner bags from households with occupational exposure to S. enterica were positive versus 1 of 24 (4.2% without known exposure. Use of a carpet cleaner and several cleaners/disinfectants reduced, but failed to eliminate, S. enterica from artificially contaminated carpet

    Conscious perception of errors and its relation to the anterior insula

    Get PDF
    To detect erroneous action outcomes is necessary for flexible adjustments and therefore a prerequisite of adaptive, goal-directed behavior. While performance monitoring has been studied intensively over two decades and a vast amount of knowledge on its functional neuroanatomy has been gathered, much less is known about conscious error perception, often referred to as error awareness. Here, we review and discuss the conditions under which error awareness occurs, its neural correlates and underlying functional neuroanatomy. We focus specifically on the anterior insula, which has been shown to be (a) reliably activated during performance monitoring and (b) modulated by error awareness. Anterior insular activity appears to be closely related to autonomic responses associated with consciously perceived errors, although the causality and directions of these relationships still needs to be unraveled. We discuss the role of the anterior insula in generating versus perceiving autonomic responses and as a key player in balancing effortful task-related and resting-state activity. We suggest that errors elicit reactions highly reminiscent of an orienting response and may thus induce the autonomic arousal needed to recruit the required mental and physical resources. We discuss the role of norepinephrine activity in eliciting sufficiently strong central and autonomic nervous responses enabling the necessary adaptation as well as conscious error perception

    Identification of a β-Arrestin-Biased Negative Allosteric Modulator for the β2-Adrenergic Receptor

    Get PDF
    Catecholamine-stimulated β2-adrenergic receptor (β2AR) signaling via the canonical Gs–adenylyl cyclase–cAMP–PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous β-agonists in the treatment of airway disease. β2AR signaling is tightly regulated by GRKs and β-arrestins, which together promote β2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias β2AR signaling toward the Gs pathway while avoiding β-arrestin-mediated effects may provide a strategy to improve the functional consequences of β2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the β2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit β-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of β-arrestin recruitment to the β2AR while having no effect on β2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the β2AR and protects against the functional desensitization of β-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the β2AR with minimal effects on the β1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the β2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the β2AR

    Reward elicits cognitive control over emotional distraction:Evidence from pupillometry

    Get PDF
    Attention is biased toward emotional stimuli, even when they are irrelevant to current goals. Motivation, elicited by performance-contingent reward, reduces behavioural emotional distraction. In emotionally-neutral contexts, reward is thought to encourage use of a proactive cognitive control strategy, altering anticipatory attentional settings to more effectively suppress distractors. The current preregistered study investigates whether a similar proactive shift occurs even when distractors are highly arousing emotional images. We monitored pupil area, an online measure of both cognitive and emotional processing, to examine how reward influences the timecourse of control. Participants (n = 110) identified a target letter flanking an irrelevant central image. Images were meaningless scrambles on 75% of trials; on the remaining 25%, they were intact positive (erotic), negative (mutilation), or neutral images. Half the participants received financial rewards for fast and accurate performance, while the other half received no performance-contingent reward. Emotional distraction was greater than neutral distraction, and both were attenuated by reward. Consistent with behavioural findings, pupil dilation was greater following emotional than neutral distractors, and dilation to intact distractors (regardless of valence) was decreased by reward. Although reward did not enhance tonic pupil dilation (an index of sustained proactive control), exploratory analyses showed that reward altered the timecourse of control – eliciting a sharp, rapid, increase in dilation immediately preceding stimulus-onset (reflecting dynamic use of anticipatory control), that extended until well after stimulus-offset. These findings suggest that reward alters the timecourse of control by encouraging proactive preparation to rapidly disengage from emotional distractors

    DNA and protein sequence databanks: Some caveats

    No full text
    Volume: 123AStart Page: 65End Page: 6

    Tonically discharging putamen neurons exhibit set-dependent responses.

    No full text
    corecore