118 research outputs found

    Insertion Element IS6110 based characterisation of Nepalese tuberculosis strains into different genetic lineages

    Get PDF
    Nepal is geographically located between India and China, a region containing significant Tuberculosis (TB) and Multi-Drug Resistance (MDR-TB) burdens. However, limited information is available on the phylogenetic diversity of Mycobacterium tuberculosis (Mtb) in Nepal. To gain further insight into the diversity of Mtb in Nepal, consecutive clinical samples from 176 newly diagnosed pulmonary tuberculosis patients were collected from two hospitals in Nepal. Insertion Site IS6110 Fluorescent Amplified Fragment Length Polymorphism (FAFLP) PCR and rpoB sequence analysis were carried out on genomic DNA extracts of cultured strains to assign them to accepted genetic lineages and identify MDR-TB. In this study, the IS6110 based characterisation showed a prevalence of 36.36% Central Asian Strain (CAS), 18.75% Beijing, 7.95 % Haarlem, 3.97% X, 2.2% each of Latin American Mediterranean (LAM), T-Uganda and T, 1.7% S and 24.4% were unassigned. Further, 3.9% of total M. tuberculosis isolates were of rifampicin resistant genotypes thus indicating that the prevalence of MDR could be higher than the country wide prevalence of MDR among new TB cases (2.2%) as reported by the national drug resistance survey carried out in 2011/2012

    Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    Get PDF
    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R. palustris genomes

    Intravitreal aflibercept for diabetic macular oedema: Moorfields’ real-world 12-month visual acuity and anatomical outcomes

    Get PDF
    OBJECTIVES:: To assess structural and functional outcomes of treatment with intravitreal aflibercept (Eylea®) for diabetic macular oedema in treatment-naive patients. DESIGN:: This is a retrospective, real-life, cohort study. PARTICIPANTS AND METHODS:: In all, 92 diabetic patients (102 eyes) receiving intravitreal anti-vascular endothelial growth factor therapy were included. A total of 99 aflibercept-treated eyes were included in the statistical analysis. Each patient had corrected visual acuity in Early Treatment Diabetic Retinopathy Study letters and optical coherence tomography central foveal thickness and macular volume performed at baseline and 12 months. Patients were initiated on a loading phase of five monthly intravitreal aflibercept injections, followed by injections if needed as per clinicians' discretion. RESULTS:: The mean number of aflibercept injections received was 6.92. At baseline, the mean visual acuity (standard deviation; Snellen) was 59.7 (16.1) (20/63) Early Treatment Diabetic Retinopathy Study letters, the mean central foveal thickness (standard deviation) was 431 (129) µm, while the mean macular volume (standard deviation) was 9.53 (1.79) mm3. At 12 months, the mean visual acuity (standard deviation; Snellen) was 69.6 (15.2; 20/40) Early Treatment Diabetic Retinopathy Study letters (p < .0001). Mean central foveal thickness (standard deviation) was 306 (122) μm (p < .0001) and mean macular volume (standard deviation) was 8.43 (1.58) mm3 (p < .0001) at 12 months; 33 (33.67%) eyes gained ⩾15 Early Treatment Diabetic Retinopathy Study letters at month 12, and 50 (55.55%) eyes had a decrease in central foveal thickness of ⩾100 µm. CONCLUSION:: There was a significant improvement in visual acuity and in anatomical outcomes in aflibercept-treated eyes at 12 months after commencing treatment for diabetic macular oedema in real-life settings

    Uncovering obsessive-compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of copy number variation

    Get PDF
    Abstract Background Obsessive-compulsive disorder (OCD) is a heterogeneous neuropsychiatric condition, thought to have a significant genetic component. When onset occurs in childhood, affected individuals generally exhibit different characteristics from adult-onset OCD, including higher prevalence in males and increased heritability. Since neuropsychiatric conditions are associated with copy number variations (CNVs), we considered their potential role in the etiology of OCD. Methods We genotyped 307 unrelated pediatric probands with idiopathic OCD (including 174 that were part of complete parent-child trios) and compared their genotypes with those of 3861 population controls, to identify rare CNVs (<0.5 % frequency) of at least 15 kb in size that might contribute to OCD. Results We uncovered de novo CNVs in 4/174 probands (2.3 %). Our case cohort was enriched for CNVs in genes that encode targets of the fragile X mental retardation protein (nominal p = 1.85 × 10−03; FDR=0.09), similar to previous findings in autism and schizophrenia. These results also identified deletions or duplications of exons in genes involved in neuronal migration (ASTN2), synapse formation (NLGN1 and PTPRD), and postsynaptic scaffolding (DLGAP1 and DLGAP2), which may be relevant to the pathogenesis of OCD. Four cases had CNVs involving known genomic disorder loci (1q21.1-21.2, 15q11.2-q13.1, 16p13.11, and 17p12). Further, we identified BTBD9 as a candidate gene for OCD. We also sequenced exomes of ten “CNV positive” trios and identified in one an additional plausibly relevant mutation: a 13 bp exonic deletion in DRD4. Conclusions Our findings suggest that rare CNVs may contribute to the etiology of OCD.http://deepblue.lib.umich.edu/bitstream/2027.42/134675/1/11689_2016_Article_9170.pd

    Autism from a Biometric Perspective

    Get PDF
    Purpose:The aim of this pilot study was to test autistic children, siblings and their parents using a biometric device based on the gas discharge visualization (GDV) technique in order to assess their psycho-emotional and physiological functional state based on the activity of the autonomic nervous system. Hypothesis: We hypothesize that the biometric assessment based on GDV will enable us: (1) to evaluate some specific features associated with autism spectrum disorder (ASD) as well as to compare autistic children to their siblings and to controls; (2) to analyze the differences in individual values of parents of autistic children versus parents of normal children. Results: Out of total of 48 acupuncture points present on ten fingertips of both hands and associated to organs/organ systems, autistic children differed significantly from controls (p &lt; 0.05) in 36 (images without filter) and 12 (images with filter), siblings differed significantly from controls (p &lt; 0.05) in 12 (images without filter) and seven (images with filter), autistic children differed significantly (p &lt; 0.05) from siblings in eight (images without filter) and one (images with filter), fathers of autistic children differed significantly (p &lt; 0.05) from controls in 14 (images without filter) and three (images with filter) and mothers of autistic children differed significantly (p &lt; 0.05) from controls in five (images without filter) and nine (images with filter) acupuncture points. Conclusions: All compared groups have shown significant difference on both psycho-emotional (images without filter) and physiological (images with filter) levels. However, the differences between autistic children and controls expressed on psycho-emotional level were the most significant as compared to the other groups. Therefore, the activity of the sympathetic autonomic nervous system is significantly altered in children with autism. The biometric method based on GDV is a promising step in autism research that may lead towards creating a disease profile and identify unique signature/biomarker for autism. Further work should involve more participants in order to augment our findings

    Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni

    Get PDF
    The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts

    Successful treatment of Candida parapsilosis mural endocarditis with combined caspofungin and voriconazole

    Get PDF
    BACKGROUND: Fungal mural endocarditis is a rare entity in which the antemortem diagnosis is seldom made. Seven cases of mural endocarditis caused by Candida spp. have been collected from literature and six of these patients died after treatment with amphotericin B. CASE PRESENTATION: We report a case of mural endocarditis diagnosed by transesophageal echocardiogram and positive blood cultures to Candida parapsilosis. Because blood cultures continued to yield C. parapsilosis despite caspofungin monotherapy, treatment with voriconazole was added. CONCLUSION: This is the first description of successful treatment of C. parapsilosis mural endocarditis with caspofungin and voriconazole

    Comparison of three rapid and easy bacterial DNA extraction methods for use with quantitative real-time PCR

    Get PDF
    The development of fast and easy on-site molecular detection and quantification methods for hazardous microbes on solid surfaces is desirable for several applications where specialised laboratory facilities are absent. The quantification of bacterial contamination necessitates the assessment of the efficiency of the used methodology as a whole, including the preceding steps of sampling and sample processing. We used quantitative real-time polymerase chain reaction (qrtPCR) for Escherichia coli and Staphylococcus aureus to measure the recovery of DNA from defined numbers of bacterial cells that were subjected to three different DNA extraction methods: the QIAamp® DNA Mini Kit, Reischl et al.’s method and FTA® Elute. FTA® Elute significantly showed the highest median DNA extraction efficiency of 76.9% for E. coli and 108.9% for S. aureus. The Reischl et al. method and QIAamp® DNA Mini Kit inhibited the E. coli qrtPCR assay with a 10-fold decrease of detectable DNA. None of the methods inhibited the S. aureus qrtPCR assay. The FTA® Elute applicability was demonstrated with swab samples taken from the International Space Station (ISS) interior. Overall, the FTA® Elute method was found to be the most suitable to selected criteria in terms of rapidity, easiness of use, DNA extraction efficiency, toxicity, and transport and storage conditions

    SNP-SNP interactions in breast cancer susceptibility

    Get PDF
    BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management
    corecore