285 research outputs found

    Emergency Management Information Frameworks for Spatial-alert Iterative Integration

    Get PDF
    Information frameworks are assuming progressively more imperative part in current emergency administration handle. A coordinated framework with abilities like foreknowledge, forecast and choice bolster capacities can give considerable included an incentive to leaders both strategic and arrangement making levels. It is however a testing errand to consistently incorporate different frameworks with devoted functionalities on useful and specialized angles, particularly when these frameworks are produced autonomously from each other with considerably extraordinary plan method of reasoning and programming innovation. In this paper, an iterative framework coordination approach is proposed by fitting administration situated, show driven and nimble framework improvement. A few outline standards and best practices from the product building group are received to encourage the incorporation undertaking. Furthermore, additional consideration is paid to give upgraded support to incorporating spatial information into the emergency administration work process. This approach means to give a commonsense framework reconciliation philosophy to incorporate emergency management information frameworks in a more compelling and proficient form

    Schoenorchis manilaliana M.Kumar & Sequiera (Orchidaceae): A new record for Orchidaceae of Tamil Nadu, India

    Get PDF
    Schoenorchis manilaliana M.Kumar & Sequiera collected during a field expedition to Megamalai Wildlife Sancturary forms a new distributional record for the state of Tamil Nadu. The present collection is a first report from outside the type locality. A brief description, photo-plate and other details of this endemic orchid is presented here

    Parametric resonance in the Rayleigh-Duffing oscillator with time-delayed feedback

    Get PDF
    We investigate the principal parametric resonance of a Rayleigh–Duffing oscillator with time-delayed feedback position and linear velocity terms. Using the asymptotic perturbation method, we obtain two slow flow equations on the amplitude and phase of the oscillator. We study the effects of the frequency detuning, the deterministic amplitude, and the time-delay on the dynamical behaviors, such as stability and bifurcation associated with the principal parametric resonance. Moreover, the appropriate choice of the feedback gain and the time-delay is discussed from the viewpoint of vibration control. It is found that the appropriate choice of the time-delay can broaden the stable region of the non-trivial steady-state solutions and enhance the control performance. Theoretical stability analysis is verified through a numerical simulation.The University of Pretoriahttp://www.elsevier.com/locate/cnsnsai201

    Analytic Behaviour of Competition among Three Species

    Full text link
    We analyse the classical model of competition between three species studied by May and Leonard ({\it SIAM J Appl Math} \textbf{29} (1975) 243-256) with the approaches of singularity analysis and symmetry analysis to identify values of the parameters for which the system is integrable. We observe some striking relations between critical values arising from the approach of dynamical systems and the singularity and symmetry analyses.Comment: 14 pages, to appear in Journal of Nonlinear Mathematical Physic

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]

    An improved optimization technique for estimation of solar photovoltaic parameters

    Get PDF
    The nonlinear current vs voltage (I-V) characteristics of solar PV make its modelling difficult. Optimization techniques are the best tool for identifying the parameters of nonlinear models. Even though, there are different optimization techniques used for parameter estimation of solar PV, still the best optimized results are not achieved to date. In this paper, Wind Driven Optimization (WDO) technique is proposed as the new method for identifying the parameters of solar PV. The accuracy and convergence time of the proposed method is compared with results of Pattern Search (PS), Genetic Algorithm (GA), and Simulated Annealing (SA) for single diode and double diode models of solar PV. Furthermore, for performance validation, the parameters obtained through WDO are compared with hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), Generalized Oppositional Teaching Learning Based Optimization (GOTLBO), Artificial Bee Swarm Optimization (ABSO), and Harmony Search (HS). The obtained results clearly reveal that WDO algorithm can provide accurate optimized values with less number of iterations at different environmental conditions. Therefore, the WDO can be recommended as the best optimization algorithm for parameter estimation of solar PV

    Server‐side workflow execution using data grid technology for reproducible analyses of data‐intensive hydrologic systems

    Get PDF
    Many geoscience disciplines utilize complex computational models for advancing understanding and sustainable management of Earth systems. Executing such models and their associated data preprocessing and postprocessing routines can be challenging for a number of reasons including (1) accessing and preprocessing the large volume and variety of data required by the model, (2) postprocessing large data collections generated by the model, and (3) orchestrating data processing tools, each with unique software dependencies, into workflows that can be easily reproduced and reused. To address these challenges, the work reported in this paper leverages the Workflow Structured Object functionality of the Integrated Rule‐Oriented Data System and demonstrates how it can be used to access distributed data, encapsulate hydrologic data processing as workflows, and federate with other community‐driven cyberinfrastructure systems. The approach is demonstrated for a study investigating the impact of drought on populations in the Carolinas region of the United States. The analysis leverages computational modeling along with data from the Terra Populus project and data management and publication services provided by the Sustainable Environment‐Actionable Data project. The work is part of a larger effort under the DataNet Federation Consortium project that aims to demonstrate data and computational interoperability across cyberinfrastructure developed independently by scientific communities.Plain Language SummaryExecuting computational workflows in the geosciences can be challenging, especially when dealing with large, distributed, and heterogeneous data sets and computational tools. We present a methodology for addressing this challenge using the Integrated Rule‐Oriented Data System (iRODS) Workflow Structured Object (WSO). We demonstrate the approach through an end‐to‐end application of data access, processing, and publication of digital assets for a scientific study analyzing drought in the Carolinas region of the United States.Key PointsReproducibility of data‐intensive analyses remains a significant challengeData grids are useful for reproducibility of workflows requiring large, distributed data setsData and computations should be co‐located on servers to create executable Web‐resourcesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137520/1/ess271_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137520/2/ess271.pd
    • 

    corecore