10 research outputs found

    Molecular Dissection of the Cellular Reponse to Dengue Virus Infection

    Get PDF
    The immune response to viral infection involves a complexity of both innate and adaptive pathways at the cellular and the molecular level. There are many approaches to begin to define the pathways at work to control viral pathogenesis. The approach favored in this thesis was to conduct a broad screen of the innate immune response at the gene expression level of infected cells. The innate immune response is critical to the control of viral infections. Type I interferons (IFN), IFNα and IFNβ, are antiviral proteins that are an integral part of the innate immune response. Furthermore, by virtue of their effects on maturation and activation of antigen-presenting cells, IFNs are a pivotal link between the innate and adaptive immune systems. Most cell types produce type-I IFN when exposed to viruses. However, viruses have evolved multiple strategies to suppress IFN production or signaling. It is imperative to understand the virus-host interaction at the molecular level in order to identify as yet unknown mechanisms of the host antiviral response; these additional pathways may be useful in counteracting the viral suppression of IFN. Type-I IFNs regulate expression of at least five hundred genes, suggesting a complex network of signaling pathways. Depending on the cell type different proteins regulate the induction of IFN or the expression of IFN-inducible genes. Identification of proteins that induce selected IFN-inducible genes may provide synergistic activity with or may have an advantage over type-I IFN for anti-viral therapy in the future. Many diseases are untreatable if identified late in their progression. In resource-limited countries, many diseases are diagnosed clinically, which can lead to incorrect or delayed diagnosis and treatment. The identification of biomarkers of disease has the potential to guide the correct therapy in a timely fashion. The objective of this thesis was to identify novel anti-viral therapies and disease biomarkers for dengue virus (DENV) infection. DENV is a mosquito-borne positive-sense single-stranded RNA virus, which causes an estimated 50 million infections annually. Most DENV infections result in a febrile illness called Dengue fever (DF). Less frequently, infections cause Dengue hemorrhagic fever (DHF), a potentially fatal vascular leakage syndrome associated with the production of pro-inflammatory cytokines. At present patients infected with DENV can only be treated by intravenous fluid support to prevent hypovolemia and hypotensive shock. This treatment is less effective in severe cases if the diagnosis is delayed. Identification of therapeutics with both antiviral and immune-modulatory activity may lower patient mortality and reduce the burden of DENV on society. DENV infection is cleared in most individuals after a short period of viremia {Libraty, 2002 #2225}. Based on in vitro and mouse models, type-I and type-II IFN signaling pathways are thought to be critical in the regulation of DENV infection. Higher serum levels of type I and type II IFNs during acute DENV infection in patients lend support to the above hypothesis {Kurane, 1993 #2152; Libraty, 2002 #2225}. To understand the DENV-human host cell interaction at the molecular level, we performed global gene expression analysis on DENV-infected primary human cells using Affymetrix GeneChips (HG-U133A). We studied dendritic cells (DC), monocytes, B cells and human umbilical vein endothelial cells (HUVECs), all of which are known to be permissive to DENV infection. We first identified genes commonly regulated in multiple cell types in response to DENV infection; we hypothesized that understanding this common gene expression profile would identify signaling pathways involved in regulation of viral spread, activation of immune cells or induction of inflammation. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), one of the 23 common response genes, was identified as a key link between type I and type II interferon response genes. Pretreatment of cells with recombinant TRAIL (rTRAIL) inhibited DENV replication in monocytes, B cells, HUVECs and DCs. Using the DC infection model, we showed that this inhibition of viral replication was apoptosis-independent. Type-I IFN receptor (IFNR) blocking experiments showed that signaling through the type-I IFN receptor played an important role in the antiviral activity of exogenous rTRAIL. Furthermore, TRAIL also significantly reduced the expression of mRNA and protein of pro-inflammatory cytokines (TNFα, MIP-1β and IFNα) and chemokines (MCP-2, IP-10 and IL-6) in response to DENV infection. The data that TRAIL inhibits both viral replication and pro-inflammatory cytokine production suggest that TRAIL has therapeutic value in dengue. The endothelial cell is the site of pathology in DENV infection in vivo (vascular permeability and plasma leakage). To understand the direct effect of DENV infection on endothelial cells and its role in the induction of genes regulating vascular permeability, we compared gene expression in DENV-infected HUVECs to that of uninfected cells and cells infected with other RNA and DNA viruses, including flaviviruses (West Nile, yellow fever, and Japanese encephalitis viruses), bunyaviruses (Sin Nombre and Hantaan viruses), Epstein-Barr virus and vaccinia virus. Among the genes confirmed for their differential expression, ST2 (Interkeukin-1 receptor-like-1 protein-IL1RL1) and indoleamine 2,3-dioxygenase (IDO) were identified to be upregulated specifically in response to DENV infection. Higher serum soluble ST2 (sST2) levels were detected in DENV-infected patients than in patients with other febrile illnesses (OFI) at the end of the febrile stage and at defervescence (p=0.0088 and p=0.0004, respectively). In addition, patients with secondary DENV infections had higher serum sST2 levels compared with patients with primary DENV infections (p=0.047 at the last day of fever and p=0.030 at defervescence). Higher levels of IDO activity (pIn conclusion, global gene expression analysis identified novel proteins with promising characteristics for the treatment and/or diagnosis of DENV infection. Although further studies will be needed to validate the clinical utility of TRAIL, sST2, and IDO, these studies demonstrate the utility of this unbiased genomics approach to identify therapies to currently incurable diseases

    Activation of TNF alpha, IL1-beta and Type-i IFn Pathways in human umbilical vein endothelial cells During Dengue 2 Virus Infection

    Get PDF
    Differential Display technique was used for gene profiling in trnasformed human umbilical vein endothelial cell line (ECV 304) and primary human umbilical vein endothelial cells (HUVECs) to study the cellular response to viral infection. After screening the mRNA from uninfected and infected HUVECs and ECV 304 cells with 16 different random primers we identified 8 gene targets. These genes included the human inhibitor of apoptosis-1 (h-IAP1), 2'-5' oligoadenylate synthetase (2'-5' OAS), 2'-5' oligoadenylate synthetase-like (2'-5' OAS-like), Galectin-9 (Gal-9), MxA, Mx1, Regulator of g-protein signaling (RGS2) and endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN). We found that HUVECs were a better model to study gene expression dureing dengue 2 virus infection but not the transformed cell line, ECV 304. Of the 41 primer combinations utilized in ECV 304 cells detected only one upregulated gene, h-IAP1 and 8 out of the 16 primer combinations tried for HUVECs. We hypothesize the activation of two novel signaling pathways (Tumor necrosis factor- alpha (TNF-alpha), Interleukin1-beta (IL1-beta) in endothelial cells during D2V infection. ALso, our data detected genes that are activated in the Type-I IFN (IFN alpha/beta) signaling pathway during dengue 2 virus infection in HUVEC

    Elevated levels of soluble ST2 protein in dengue virus infected patients

    No full text
    Levels of the soluble form of the interleukin-1 receptor-like 1 protein (IL-1RL-1/ST2) are elevated in the serum of patients with diseases characterized by an inflammatory response. The objective of this study was to determine the concentration of soluble ST2 (sST2) in dengue infected patients during the course of the disease. Twenty-four patients with confirmed dengue infection, classified as dengue fever, and 11 patients with other febrile illness (OFI) were evaluated. Levels of sST2 in serum and laboratory variables usually altered during dengue infections were measured. Dengue infected patients had higher serum sST2 levels than OFI at the end of the febrile stage and at defervescence (p=0.0088 and p=0.0004, respectively). Patients with secondary dengue infections had higher serum sST2 levels compared with patients with primary dengue infections (p=0.047 at last day of fever and p=0.030 at defervescence). Furthermore, in dengue infected patients, we found a significant negative correlation of sST2 with platelet and WBC counts, and positive correlation with thrombin time and transaminases activity. We suggest that sST2 could be a potential marker of dengue infection, could be associated with severity or could play a role in the immune response in secondary dengue virus infection

    Detection of Macrolide, Lincosamide and Streptogramin Resistance among Methicillin Resistant Staphylococcus aureus (MRSA) in Mumbai

    No full text
    Background: The increase in incidence of Methicillin Resistant Staphyloccocus aureus (MRSA) and its extraordinary potential to develop antimicrobial resistance has highlighted the need for better agents to treat such infections. This has led to a renewed interest in use of new drugs for treatment with clindamycin and quinuprsitin-dalfopristin being the preferred choice for treatment. Aim & Objectives: This study was undertaken to detect the prevalence of MacrolideLincosamide-Streptogramin (MLS) resistance among clinical isolates of MRSA.Material and Methods:Two hundred and thirty clinical isolates of S. aureus were subjected to routine antibiotic susceptibility testing including cefoxitin, erythromycin and quinupristindalfopristin. Inducible resistance to clindamycin was tested by 'D' test as per Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Out of all S. aureus isolates, 93.91% were identified as MRSA. In the disc diffusion testing, 81.5% of isolates showed erythromycin resistance. Among these, the prevalence of constitutive (cMLS ), inducible (iMLS ) b b and MS-phenotype were 35.80%, 31.82% and 32.39% respectively by the D-test method. 77.8% of isolates were resistant to quinupristin-dalfopristin and the Minimum Inhibitory Concentration (MIC) ranged from 4–32 µg/ml. 89.20% of isolates were resistant to both quinupristin-dalfopristin and erythromycin of which 35.03%, 35.67% and 29.30% belonged to iMLS , cMLS and MS phenotype respectively. Conclusion: The emergence of quinupristindalfopristin resistance and MLS phenotypes brings b about the need for the simple and reliable D-test in routine diagnosis and further susceptibility testing for proper antimicrobial therapy

    TRAIL Is a Novel Antiviral Protein against Dengue Virusâ–¿

    Get PDF
    Dengue fever is an important tropical illness for which there is currently no virus-specific treatment. To shed light on mechanisms involved in the cellular response to dengue virus (DV), we assessed gene expression changes, using Affymetrix GeneChips (HG-U133A), of infected primary human cells and identified changes common to all cells. The common response genes included a set of 23 genes significantly induced upon DV infection of human umbilical vein endothelial cells (HUVECs), dendritic cells (DCs), monocytes, and B cells (analysis of variance, P < 0.05). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), one of the common response genes, was identified as a key link between type I and type II interferon response genes. We found that DV induces TRAIL expression in immune cells and HUVECs at the mRNA and protein levels. The induction of TRAIL expression by DV was found to be dependent on an intact type I interferon signaling pathway. A significant increase in DV RNA accumulation was observed in anti-TRAIL antibody-treated monocytes, B cells, and HUVECs, and, conversely, a decrease in DV RNA was seen in recombinant TRAIL-treated monocytes. Furthermore, recombinant TRAIL inhibited DV titers in DV-infected DCs by an apoptosis-independent mechanism. These data suggest that TRAIL plays an important role in the antiviral response to DV infection and is a candidate for antiviral interventions against DV

    Increased Production of Interleukin-8 in Primary Human Monocytes and in Human Epithelial and Endothelial Cell Lines after Dengue Virus Challenge

    No full text
    The more severe form of dengue virus infection, dengue hemorrhagic fever, is characterized by plasma leakage and derangements in hemostasis. As elevated interleukin-8 (IL-8) levels have been observed in sera from patients with more severe disease manifestations, a study was initiated to look at the effect of dengue virus infection in vitro on proinflammatory cytokine secretion and expression. A significant increase in IL-8 levels in the culture supernatant of primary human monocytes infected with dengue 2 virus (D2V) New Guinea C (NGC) was found by enzyme-linked immunosorbent assay. Additionally, by reverse transcriptase PCR, the mRNA was also augmented. Among the proinflammatory cytokines and their mRNAs measured (IL-6, IL-1β, IL-8, and tumor necrosis factor alpha), IL-8 showed the greatest change following D2V infection. Similarly, two cell lines, 293T (a human epithelial cell line) and ECV304 (an endothelial cell line), were permissive to D2V NGC and responded to the infection by increasing the synthesis of IL-8. Nuclear factor kappa B (NF-κB) and nuclear factor IL-6 (NFIL-6) are primary mediators of IL-8 expression. We studied the transcriptional regulation of IL-8 in the ECV304 and 293T cell lines and found that the induction of IL-8 gene expression involved the activation of NF-κB (P = 0.001) and, to a lesser extent, the activation of NFIL-6 in ECV304 cells only. We next observed by the chromatin immunoprecipitation procedure in vivo acetylation of core histones bound to the IL-8 promoter after D2V infection. IL-8 produced by infected monocytes and also IL-8 that may be produced by endothelial or other epithelial cells is associated with the hyperacetylation of histones bound to the IL-8 promoter in addition to the activation of transcription by NF-κB. We hypothesize that the overall increase in IL-8 synthesis observed in this in vitro study may play a role in the pathogenesis of the plasma leakage seen in dengue hemorrhagic fever and dengue shock syndrome

    Dengue Virus Induces Novel Changes in Gene Expression of Human Umbilical Vein Endothelial Cells

    No full text
    Endothelial cells are permissive to dengue virus (DV) infection in vitro, although their importance as targets of DV infection in vivo remains a subject of debate. To analyze the virus-host interaction, we studied the effect of DV infection on gene expression in human umbilical vein endothelial cells (HUVECs) by using differential display reverse transcription-PCR (DD-RTPCR), quantitative RT-PCR, and Affymetrix oligonucleotide microarrays. DD identified eight differentially expressed cDNAs, including inhibitor of apoptosis-1, 2′-5′ oligoadenylate synthetase (OAS), a 2′-5′ OAS-like (OASL) gene, galectin-9, myxovirus protein A (MxA), regulator of G-protein signaling, endothelial and smooth muscle cell-derived neuropilin-like protein, and phospholipid scramblase 1. Microarray analysis of 22,000 human genes confirmed these findings and identified an additional 269 genes that were induced and 126 that were repressed more than fourfold after DV infection. Broad functional responses that were activated included the stress, defense, immune, cell adhesion, wounding, inflammatory, and antiviral pathways. These changes in gene expression were seen after infection of HUVECs with either laboratory-adapted virus or with virus isolated directly from plasma of DV-infected patients. Tumor necrosis factor alpha, OASL, and MxA and h-IAP1 genes were induced within the first 8 to 12 h after infection, suggesting a direct effect of DV infection. These global analyses of DV effects on cellular gene expression identify potentially novel mechanisms involved in dengue disease manifestations such as hemostatic disturbance

    Efficient dengue virus (DENV) infection of human muscle satellite cells upregulates type I interferon response genes and differentially modulates MHC I expression on bystander and DENV-infected cells

    No full text
    Dengue virus (DENV) is a mosquito-borne flavivirus that causes an acute febrile disease in humans, characterized by musculoskeletal pain, headache, rash and leukopenia. The cause of myalgia during DENV infection is still unknown. To determine whether DENV can infect primary muscle cells, human muscle satellite cells were exposed to DENV in vitro. The results demonstrated for the first time high-efficiency infection and replication of DENV in human primary muscle satellite cells. Changes in global gene expression were also examined in these cells following DENV infection using Affymetrix GeneChip analysis. The differentially regulated genes belonged to two main functional categories: cell growth and development, and antiviral type I interferon (IFN) response genes. Increased expression of the type I IFN response genes for tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), melanoma-derived antigen 5 (MDA-5), IFN-gamma-inducible protein 10 (IP-10), galectin 3 soluble binding protein (LGals3BP) and IFN response factor 7 (IRF7) was confirmed by quantitative RT-PCR. Furthermore, higher levels of cell-surface-bound intracellular adhesion molecule-1 (ICAM-1) and soluble ICAM-1 in the cell-culture medium were detected following DENV infection. However, DENV infection impaired the ability of the infected cells in the culture medium to upregulate cell-surface expression of MHC I molecules, suggesting a possible mechanism of immune evasion by DENV. The findings of this study warrant further clinical research to identify whether muscle cells are targets for DENV infection during the acute stage of the disease in vivo

    Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function

    No full text
    The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-γ) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-γ against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo
    corecore