6 research outputs found

    Space-vector-based hybrid pulse width modulation technique to reduce line current distortion in induction motor drives

    No full text
    Pulse width modulation (PWM) techniques involving different switching sequences are used in space vector-based PWM generation for reducing line current ripple in induction motor drives. This study proposes a hybrid PWM technique employing five switching sequences. The proposed technique is a combination of continuous PWM, discontinuous PWM (DPWM) and advanced bus clamping PWM methods. Performance of the proposed PWM technique is evaluated and compared with those of the existing techniques on a constant volts per hertz induction motor drive. In terms of total harmonic distortion in the line current, the proposed method is shown to be superior to both conventional space vector PWM (CSVPWM) and DPWM over a fundamental frequency range of 32-50 Hz at a given average switching frequency. The reduction in harmonic distortion is about 42% over CSVPWM at the rated speed of the drive

    Space-Vector-Based Hybrid Pulsewidth Modulation Techniques for Reduced Harmonic Distortion and Switching Loss

    No full text
    Novel switching sequences can be employed in spacevector-based pulsewidth modulation (PWM) of voltage source inverters. Differentswitching sequences are evaluated and compared in terms of inverter switching loss. A hybrid PWM technique named minimum switching loss PWM is proposed, which reduces the inverter switching loss compared to conventional space vector PWM (CSVPWM) and discontinuous PWM techniques at a given average switching frequency. Further, four space-vector-based hybrid PWM techniques are proposed that reduce line current distortion as well as switching loss in motor drives, compared to CSVPWM. Theoretical and experimental results are presented

    Space Vector Based Hybrid PWM Techniques for Reduced Current Ripple

    No full text
    This paper investigates certain novel switching sequences involving division of active vector time for space vectorbased pulsewidth modulation (PWM) generation for a voltage source inverter. This paper proposes two new sequences, and identifies all possible sequences, which result in the same average switching frequency as conventional space vector PWM (CSVPWM) at a given sampling frequency. This paper brings out amethod for designing hybrid PWMtechniques involving multiple sequences to reduce line current ripple. The three proposed hybrid PWM techniques (three-zone PWM, five-zone PWM and sevenzone PWM) employ three, five and seven different sequences, respectively, in every sector. Each sequence is employed in a spatial region within the sector where it results in the lowest rms current ripple over the given sampling period. The proposed techniques lead to a significant reduction in THD over CSVPWM at high line voltages. The five-zone technique results in the lowest THD among real-time techniques with uniform sampling, while the seven-zone technique is the best among real-time techniques with twin sampling rates. The superior harmonic performance of the proposed techniques over CSVPWM and existing bus-clamping PWM techniques is established theoretically as well as experimentally

    Reduction of Torque Ripple in Induction Motor Drives Using an AdvancedHybrid PWM Technique

    No full text
    A voltage source inverter-fed induction motor produces a pulsating torque due to application of nonsinusoidal voltages. Torque pulsation is strongly influenced by the pulsewidth modulation (PWM) method employed. Conventional space vector PWM (CSVPWM) is known to result in less torque ripple than sine-triangle PWM. This paper aims at further reduction in the pulsating torque by employing advanced bus-clamping switching sequences, which apply an active vector twice in a subcycle. This paper proposes a hybrid PWM technique which employs such advanced bus-clamping sequences in conjunction with a conventional switching sequence. The proposed hybrid PWM technique is shown to reduce the torque ripple considerably over CSVPWM along with a marginal reduction in current ripple

    Space Vector Based Hybrid PWM Techniques for Reduced Current Ripple

    No full text
    This paper investigates certain novel switching sequences involving division of active vector time for space vectorbased pulsewidth modulation (PWM) generation for a voltage source inverter. This paper proposes two new sequences, and identifies all possible sequences, which result in the same average switching frequency as conventional space vector PWM (CSVPWM) at a given sampling frequency. This paper brings out amethod for designing hybrid PWMtechniques involving multiple sequences to reduce line current ripple. The three proposed hybrid PWM techniques (three-zone PWM, five-zone PWM and sevenzone PWM) employ three, five and seven different sequences, respectively, in every sector. Each sequence is employed in a spatial region within the sector where it results in the lowest rms current ripple over the given sampling period. The proposed techniques lead to a significant reduction in THD over CSVPWM at high line voltages. The five-zone technique results in the lowest THD among real-time techniques with uniform sampling, while the seven-zone technique is the best among real-time techniques with twin sampling rates. The superior harmonic performance of the proposed techniques over CSVPWM and existing bus-clamping PWM techniques is established theoretically as well as experimentally
    corecore