3,130 research outputs found

    Broken-symmetry-adapted Green function theory of condensed matter systems:towards a vector spin-density-functional theory

    Full text link
    The group theory framework developed by Fukutome for a systematic analysis of the various broken symmetry types of Hartree-Fock solutions exhibiting spin structures is here extended to the general many body context using spinor-Green function formalism for describing magnetic systems. Consequences of this theory are discussed for examining the magnetism of itinerant electrons in nanometric systems of current interest as well as bulk systems where a vector spin-density form is required, by specializing our work to spin-density-functional formalism. We also formulate the linear response theory for such a system and compare and contrast them with the recent results obtained for localized electron systems. The various phenomenological treatments of itinerant magnetic systems are here unified in this group-theoretical description.Comment: 17 page

    Joint measurability, steering and entropic uncertainty

    Full text link
    The notion of incompatibility of measurements in quantum theory is in stark contrast with the corresponding classical perspective, where all physical observables are jointly measurable. It is of interest to examine if the results of two or more measurements in the quantum scenario can be perceived from a classical point of view or they still exhibit non-classical features. Clearly, commuting observables can be measured jointly using projective measurements and their statistical outcomes can be discerned classically. However, such simple minded association of compatibility of measurements with commutativity turns out to be limited in an extended framework, where the usual notion of sharp projective valued measurements of self adjoint observables gets broadened to include unsharp measurements of generalized observables constituting positive operator valued measures (POVM). There is a surge of research activity recently towards gaining new physical insights on the emergence of classical behavior via joint measurability of unsharp observables. Here, we explore the entropic uncertainty relation for a pair of discrete observables (of Alice's system) when an entangled quantum memory of Bob is restricted to record outcomes of jointly measurable POVMs only. Within the joint measurability regime, the sum of entropies associated with Alice's measurement outcomes - conditioned by the results registered at Bob's end - are constrained to obey an entropic steering inequality. In this case, Bob's non-steerability reflects itself as his inability in predicting the outcomes of Alice's pair of non-commuting observables with better precision, even when they share an entangled state. As a further consequence, the quantum advantage envisaged for the construction of security proofs in key distribution is lost, when Bob's measurements are restricted to the joint measurability regime.Comment: 5 pages, RevTeX, 1 pdf figure, Comments welcom

    Development of three dimensional constitutive theories based on lower dimensional experimental data

    Get PDF
    Most three dimensional constitutive relations that have been developed to describe the behavior of bodies are correlated against one dimensional and two dimensional experiments. What is usually lost sight of is the fact that infinity of such three dimensional models may be able to explain these experiments that are lower dimensional. Recently, the notion of maximization of the rate of entropy production has been used to obtain constitutive relations based on the choice of the stored energy and rate of entropy production, etc. In this paper we show different choices for the manner in which the body stores energy and dissipates energy and satisfies the requirement of maximization of the rate of entropy production that leads to many three dimensional models. All of these models, in one dimension, reduce to the model proposed by Burgers to describe the viscoelastic behavior of bodies.Comment: 23 pages, 6 figure

    Bulk viscosity of spin-one color superconducting strange quark matter

    Full text link
    The bulk viscosity in spin-one color-superconducting strange quark matter is calculated by taking into account the interplay between the nonleptonic and semi-leptonic week processes. In agreement with previous studies, it is found that the inclusion of the semi-leptonic processes may result in non-negligible corrections to the bulk viscosity in a narrow window of temperatures. The effect is generally more pronounced for pulsars with longer periods. Compared to the normal phase, however, this effect due to the semi-leptonic processes is less pronounced in spin-one color superconductors. Assuming that the critical temperature of the phase transition is much larger than 40 keV, the main effect of spin-one color superconductivity in a wide range of temperatures is an overall increase of the bulk viscosity with respect to the normal phase. The corresponding enhancement factor reaches up to about 9 in the polar and A-phases, about 25 in the planar phase and about 29 in the CSL phase. This factor is determined by the suppression of the nonleptonic rate in color-superconducting matter and, therefore, may be even larger if all quark quasiparticles happen to be gapped.Comment: 10 pages, 4 multi-panel figures, including one new in the final versio

    Joint Measurability and Temporal Steering

    Get PDF
    Quintino et. al. (Phys. Rev. Lett. 113, 160402 (2014)) and Uola et. al. (Phys. Rev. Lett. 113, 160403 (2014)) have recently established an intrinsic relation between non-joint measurability and Einstein-Podolsky- Rosen steering. They showed that a set of measurements is incompatible (i.e., not jointly measurable) if and only if it can be used for the demonstration of steering. In this paper, we prove the temporal analog of this result viz., a set of measurements are incompatible if and only if it exhibits temporal steering.Comment: 6 pages,no figures, typos corrected, improved presentation; To appear in JOSA B feature issue "80 years of Steering and the Einstein-Podolsky-Rosen Paradox

    Entanglement of Pure Two-Mode Gaussian States

    Full text link
    The entanglement of general pure Gaussian two-mode states is examined in terms of the coefficients of the quadrature components of the wavefunction. The entanglement criterion and the entanglement of formation are directly evaluated as a function of these coefficients, without the need for deriving local unitary transformations. These reproduce the results of other methods for the special case of symmetric pure states which employ a relation between squeezed states and Einstein-Podolsky-Rosen correlations. The modification of the quadrature coefficients and the corresponding entanglement due to application of various optical elements is also derived.Comment: 12 page
    corecore