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recently established an intrinsic relation between nonjoint measurability and Einstein–Podolsky–Rosen steering.
They showed that a set of measurements are incompatible (i.e., not jointly measurable) if and only if they can be
used for the demonstration of steering. In this paper, we prove the temporal analog of this result, viz., a set of
measurements are incompatible if and only if they exhibit temporal steering in a single quantum system. ©2015
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1. INTRODUCTION

The purpose of measurements is to discern the properties of
a system under investigation. In the classical scenario, all the
physical observables are jointly measurable (or compatible). In
contrast, in the quantum world, noncommuting observables
are declared to be incompatible, because it is not possible to
assign well-defined values to these observables jointly. The
notion of compatibility of measurements is captured entirely
by commutativity of the observables if one restricts them
to only projective valued (PV) measurements. However, con-
necting compatibility of measurements with commutativity
turns out to be limited in an extended framework, where
the conventional idea of sharp PV measurements of self-
adjoint observables gets broadened to include generalized
measurements of positive operator valued observables [1–11].
Active research efforts are dedicated [1,4–18] to investigating
clear operational criteria of joint measurability within the
generalized framework of positive operator valued measures
(POVMs) and to identify the significance of incompatible
measurements in revealing puzzling quantum features like
Bell nonlocality [19], contextuality [20], and steering [21,22].
Particularly, Wolf et al. [8] have proved that the violation
of the Clauser–Horne–Shimony–Holt [23] inequality in an
entangled state can be witnessed if and only if incompatible

measurements of any pairs of POVMs with binary outcomes
are employed. It has been realized that a generalized noncon-
textuality inequality can be violated by a quantum state in
two-dimensional [24] Hilbert space by employing a set of
three dichotomic POVMs that have pairwise joint measurabil-
ity—but not triplewise joint measurability [11,14]. In yet an-
other recent development, Quintino et al. [16] and Uola et al.
[17] have established that a set of nonjointly measurable
POVMs is the one that is useful for the task of nonlocal
steering.

The concept of nonlocal Einstein–Podolsky–Rosen (EPR)
steering was originally initiated by Schrödinger [21]—as
the ability to remotely prepare the state of a subsystem of
an entangled state by performing local measurements on
another subsystem. An experimentally testable steering
criterion was developed by Reid [25] for continuous variable
systems (Reid proposed an uncertainty relation involving
conditional variances of position and momentum violation
that demonstrates EPR nonlocality in an entangled state;
this is the first steering inequality, though it was not
explicitly stated in Ref. [25]). Wiseman et al. [26] formalized
the task of steering via falsification of local hidden state
(LHS) models and showed that steering constitutes a differ-
ent class of nonlocality that lies between entanglement and
Bell nonlocality.
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The quantum steering task is usually described in terms of
an example: Alice supposedly prepares a composite quantum
state and sends a subsystem to Bob. She tries to convince Bob
that they share an entangled state, which would allow her (with
the help of local measurements on her part of the system) to
remotely affect (steer) Bob’s quantum state. In order to verify if
Alice’s claim is true, Bob asks Alice to perform a local measure-
ment of an observable X k on her part of the state and announce
her result xk. From local quantum state tomography (via mea-
surements at his end), Bob determines his set of states
fρxk jk∕Tr�ρxk jk �g. If Bob’s assemblage [16], i.e., the set of un-
normalized states fρxk jkg (realized in each experimental run for
different choices of Alice’s observables X k with statistical
outcomes xk), does not admit a LHS decomposition of the
form [27]

ρxk jk �
X
λ

g�λ�p�xkjk; λ�ρλ (1)

(where 0 ≤ g�λ� ≤ 1;
P

λg�λ� � 1 and 0 ≤ p�xkjk; λ� ≤ 1;P
xk p�xkjk; λ� � 1), then Bob can convince himself that

Alice is not cheating him and they indeed share an entangled
state. On the other hand, if Bob’s assemblage fρxk jkg admits a
LHS structure [Eq. (1)], he would be unable to witness viola-
tion of any of the steering inequalities [22], and would there-
fore conclude that Alice is fooling him.

In order to demonstrate steerability, (i) Alice and Bob
should necessarily share an entangled state (though the con-
verse is not true [26]), and (ii) Alice’s measurements must
be comprised of incompatible POVMs [16,17]. Thus, in ad-
dition to entanglement being a resource for the steering task,
incompatibility of measurements also plays a key role.

Apart from the developments toward probing nonlocality, in
1985 Leggett and Garg [28] proposed an inequality to test the
concept of macrorealism in a single quantum system in terms of
the correlations in the statistical outcomes of a dynamical
observable at different times [29–33]. Macrorealism rests on
the following assumptions: (i) physical properties of a macro-
scopic object exist independent of the act of observation (pos-
tulate on the existence of reality for all physical observables in the
macroscopic world), and (ii) measurements are noninvasive,
i.e., the measurements of an observable at different instants
of time do not influence its subsequent dynamical evolution. It
has been experimentally demonstrated in a wide range of quan-
tum systems [34–39] that temporal correlations in the outcomes
of an observable measured sequentially on a quantum system at
different times do not fall under the tenet of macrorealism, i.e.,
they violate the Leggett–Garg inequality (also known as the
temporal Bell inequality [40,41]). Very recently, the temporal
analog of steering in a single quantum system has been proposed
[42,43]. In this paper we show that the connection between
spatial steerability and incompatible measurements of Refs. [16]
and [17] can be extended to its temporal counterpart in a single
quantum system also, viz., nonjoint measurability is necessary
and sufficient for temporal steerability.

We organize the contents of the paper as follows. We begin
by giving a concise description of joint measurability of
POVMs in Section 2. Section 3 is devoted to discussing the
temporal analog of EPR steering in a single quantum system

and to establish that a set of incompatible POVMs is necessary
and sufficient for temporal steering. An example to bring
forth the intrinsic connection between temporal steering and
incompatibility of measurements in a single qubit system is
discussed in the Subsection 3.A. Concluding remarks are given
in Section 4.

2. JOINT MEASURABILITY OF POVMS

Mathematically, a POVM is a collection E � fE�x�g consist-
ing of positive self-adjoint operators E�x� ≥ 0 as its elements—
which sum up to give the identity operator 1, i.e.,P

xE�x� � 1. A measurement of E in a quantum state ρ results
in the outcomes x with probability of occurrence p�xjE� �
Tr�ρE�x��. It may be noted that the POVM fE�x�g encom-
passes the conventional PV measurements as a special case
[when the elements E�x� of the POVM constitute a complete
and orthogonal set fΠ�x�g of projectors].

In the restricted measurement scenario, where only PV mea-
surements are considered, it is well established that commuting
physical observables are jointly measurable. But in the extended
framework of generalized measurements, the notion of joint
measurability is nontrivial and has received increasing attention
[1–11]. A more refined notion of compatible (jointly measur-
able) POVMs is defined as follows. A set of POVMs Ek �
fEk�xk�g is said to be compatible if the probabilities p�xkjk� �
Tr�ρEk�xk�� of their outcomes in any arbitrary quantum state ρ
can be discerned by measuring a global POVM G �
fG�λ�;G�λ� ≥ 0;

P
λG�λ� � 1g—where the measurement

outcomes λ � fx1; x2;…g of G�λ� occur with probabilities
g�λ� � Tr�ρG�λ��—by classical postprocessing of the data
[7,17]:

p�xkjk� �
X
λ

g�λ�p�xkjk; λ�; (2)

where 0 ≤ p�xkjk; λ� ≤ 1 are some arbitrary positive numbers
satisfying

P
xk p�xkjk; λ� � 1.

More precisely, associated with a set of jointly measurable
POVMs fEk�xk�g, there exists a grand POVM G � fG�λ�g
such that

Ek�xk� �
X
λ

p�xkjk; λ�G�λ� ∀ k: (3)

In other words, it suffices to measure the grand POVM G to
discern the measurement results of compatible POVMs Ek.

An important aspect to be highlighted here is that the gen-
eralized POVMs are jointly measurable even if they do not
commute with each other.

Consider a triad of qubit observables X � j0ih1j � j1ih0j,
Y � −ij0ih1j � ij1ih0j, and Z � j0ih0j − j1ih1j, measured
by employing the POVMs EX ;EY , and EZ , defined in terms
of their elements:

EX �x� �
1

2
�1� ηxX �;

EY �y� �
1

2
�1� ηyY �;

EZ �z� �
1

2
�1� ηzZ �: (4)
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The measurements result in binary outcomes x; y; z � �1, and
they correspond to fuzzy measurements of the observables
X ; Y ; Z , characterized by the unsharpness parameter
0 ≤ η ≤ 1. It has been identified that the qubit POVMs
fEX �x�g, fEY �y�g, and fEZ �z�g are pairwise jointly measurable
if and only if η ≤ 1∕

ffiffiffi
2

p
, and the condition η ≤ 1∕

ffiffiffi
3

p
is nec-

essary and sufficient for their triplewise joint measurability
[6,11,14]. It may also be noted that when η � 1, the
POVMs fEX �x�g; fEY �y�g; fEZ �z�g reduce to their corre-
sponding sharp PV versions fΠX �x�g; fΠY �y�g; fΠZ �z�g.

3. TEMPORAL STEERING AND INCOMPATIBLE
MEASUREMENTS

We consider a system prepared in a quantum state ρ � ρ�0�
that evolves under the Hamiltonian evolution U �t� � e−iHt∕ℏ,
dynamically transforming the state (in the Schrödinger picture)
as ρ → ρ�t� � U �t�ρU y�t� at time t . The physical observables
undergo dynamical evolution (in the Heisenberg picture) as
X �0� → X �t� � U y�t�X �0�U �t�. The observable X at differ-
ent time instants tk (which we denote by X k) do not commute
in general. Hence, fX kg values are not jointly measurable within
the restricted framework of PV measurements. Contrast this
situation with the classical scenario, where measurement of an
observable at a given instant in time does not disturb its sub-
sequent evolution. In other words, one can measure an observ-
able at different instants in time jointly in the classical scenario.
In the quantum case, measurements of noncommuting observ-
ables, in general, form an incompatible set of measurements.

To illustrate the temporal analog of steering, we consider a
game involving two players, Alice and Bob. Alice prepares a
state ρ (which is not disclosed to Bob). Bob asks Alice to mea-
sure the observable X at different instants of time tk using
incompatible POVMs. Alice claims that she has measured
X k and obtained an outcome xk with probability p�xkjk�.
She gives the postmeasured states

ρxk jk
Tr�ρxk jk �

to Bob. Bob’s task

is to verify whether Alice has given him a genuine set of post-
measured assemblage fρxk jkg, where the unnormalized states

ρxk jk �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek�xk�

p
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek�xk�

p
(5)

have resulted via measurements of incompatible POVMs
fEk�xk�g of the observables X k, or whether Alice is cheating
him by merely stating that she has performed the measurements.

Bob can only trust his measurements on the states handed
over to him by Alice, with a prelabel fxk; p�xkjk�g. In order to
accomplish the protocol, Bob may choose to measure the ob-
servables X l at a later time, l ≥ k, on the assemblage ρxk jk and
record the conditional probabilities P�xl jxk� of his outcomes xl
(given that Alice had obtained an outcome xk in her measure-
ment of the observable X k); he then explores whether the tem-
poral correlations of the observables X k, X l violate any steering
inequality [44]. If the temporal steering inequality is violated,
then Bob concludes that Alice has indeed performed incompat-
ible measurements of the observables X k. We refer to this sce-
nario as temporal steering [45].

More generally, Bob could determine the assemblage fρxk jkg
given to him through quantum state tomography; if the
assemblage ρxk jk is of the hidden state (HS) form,

ρxk jk �
P

λg�λ�p�xkjk; λ�ρλ (which is identical to the LHS
form [Eq. (1)]), where 0 ≤ p�xkjk; λ� ≤ 1;

P
xk p�xkjk; λ� � 1,

then Bob convinces himself that the assemblage fρxk jkg is not
temporally steered. This is because the actual scenario may be the
following. Alice could have drawn some random states ρλ with
probability g�λ� (from a statistical mixture ρ � P

λg�λ�ρλ) but
announce that an outcome xk has occurred in the measurement
of the observable X at time tk, with a probability of occurrence
p�xkjk; λ� [Alice could have theoretically calculated the
probabilities p�xkjk; λ� for the hypothetical outcomes xk of
measurement]. If Alice has indeed performed incompatible
measurements, as she claims, Bob’s assemblage fρxk jkg deviates
from the HS form. Bob can then convince himself that Alice
has indeed given him a set of states that reveals temporal steering,
and it has resulted from the measurements of the observable X
at different instants in time using incompatible POVMs.

We now proceed to show that measurements of fX kg using
a compatible set fEkg of POVMs do not lead to temporal
steering.

Let us suppose that Alice performs the measurement of a
global POVM G � fG�λ�g. After her measurement, the
postmeasured states are given by

ρλ �
ffiffiffiffiffiffiffiffiffiffi
G�λ�

p
ρ

ffiffiffiffiffiffiffiffiffiffi
G�λ�

p
∕g�λ�; (6)

where g�λ� � Tr�ρG�λ�� is the probability of outcome λ. Alice
would then classically postprocess the measurement data of the
global POVM G � fG�λ�g to obtain the probabilities of out-
comes p�xkjk� of measurement of any compatible POVMs Ek
to have resulted in an outcome xk as

p�xkjk� � Tr�ρEk�xk��
�

X
λ

p�xkjk; λ�Tr�ρG�λ��

�
X
λ

p�xkjk; λ�g�λ�: (7)

More specifically, Alice could discern the results of measure-
ments of compatible POVMs Ek � fEk�xk�g via measurement
of a global POVM G � fG�λ�g and then use of the decom-
position Ek�xk� �

P
λp�xkjk; λ�G�λ�.

After Alice announces her measurement results fxk; p�xkjk�g
of Ek�xk� and hands over the postmeasured set of states, Bob
detects that his assemblage fρ�xkjk�g is of the HS form
ρ�xkjk� �

P
λg�λ�p�xkjk; λ�ρλ. Thus, Bob concludes that

there is no temporal steering.
Conversely, we prove that nonjointly measurable (incom-

patible) POVMs are sufficient to demonstrate temporal steer-
ing. To demonstrate, we consider a completely random state
ρ � 1∕d and a set of POVMs fEkg for the measurements
of the observables fX kg. The postmeasured assemblage
fρxk jkg is characterized by its elements,

ρxk jk �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek�xk�

p
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek�xk�

p
� 1

d
Ek�xk�: (8)

One can thus express the elements Ek�xk� of the POVM in
terms of the assemblage fρxk jkg as [46]

Ek�xk� � dρxk jk. (9)

If there is no temporal steering, then the assemblage fρxk jkg is
described by a HS form [Eq. (1)], and hence one obtains
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Ek�xk� � d
X
λ

g�λ�p�xkjk; λ�ρλ �
X
λ

p�xkjk; λ�G�λ�; (10)

where G�λ� � dg�λ�ρλ. It is easy to see that Eq. (10) is essen-
tially the joint measurability condition [see Eq. (3)] for the def-
inition of compatible POVMs fEk�x�g. We thus obtain the
result: a set of POVMs is said to be nonjointly measurable if
and only if it is useful for demonstrating temporal steering.

Our result highlights that one does not require a steerable
entangled state to determine whether a given set of measure-
ments is compatible or not; it suffices to detect temporal non-
steerability in a single quantum system itself to accomplish
this task.

A. Joint Measurability and Temporal Steering in a
Single Qubit System

For the purpose of illustrating the intrinsic connection between
temporal steering and nonjoint measurability of the POVMs in
a single qubit system, suppose that Alice prepares a single qubit
system in a maximally disordered state ρ � 1

2. Bob asks Alice to
subject the system to a Hamiltonian evolution U �t� � e−iHt∕ℏ

where the Hamiltonian H � ℏωZ � ℏω�j0ih0j − j1ih1j�
and measure the observables X k � U y�tk�XU �tk� �
X cos�ωtk� � Y sin�ωtk�; X � j0ih1j � j1ih0j, Y �
−i�j0ih1j − j1ih0j� at two different time intervals (i) t1 � 0
and (ii) t2 � π∕�2ω� using incompatible POVMs. Alice em-
ploys binary outcome POVMs fEX �x� � 1

2 �1� ηxX �; x �
�1g and fEY �y� � 1

2
�1� ηyY �; y � �1g to measure the ob-

servables X 1 � X and X 2 � Y , respectively. After her mea-
surements on several identically prepared copies of the initial
state, Alice hands over four different assemblages fρx��1j1g,
fρy��1j2g—labeled by the outcomes of measurements
x � �1, y � �1—and the corresponding probablilities of oc-
currence p�x � �1j1�; p�y � �1j2� to Bob. Bob then chooses
to perform PV measurement fΠX �x 0�� 1

2�1� x 0X �;x 0 ��1g
at time t3 � 2π∕ω on the assemblage fρx��1j1g (note that at
t3 � 2π∕ω, the observable X 3 � X ); he obtains the condi-
tional probabilities for his measurement outcomes x 0 � �1:

P�x 0jx� � Tr�ρxj1ΠX �x 0��∕p�x�
� Tr�EX �x�ΠX �x 0��

� 1

2
�1� ηxx 0�: (11)

Further, Bob carries out PV measurements fΠY �y 0� � 1
2 �1�

y 0Y �; y 0 � �1g at time t4 � 5π∕�2ω� on the assemblage
fρy��1j1g (at t4 � 5π∕�2ω�, the observable X 4 � Y ) and
registers the conditional probabilities for his measurement out-
comes y 0 � �1:

P�y 0jy� � Tr�ρyj2ΠY �y 0��∕p�y�;
� Tr�EY �y�ΠY �y 0��

� 1

2
�1� ηyy 0�: (12)

(In the second lines of Eqs. (11) and (12), we have substi-
tuted the probabilities of Alice’s outcomes p�x� �
Tr�ρEX �x�� � 1∕2, p�y� � Tr�ρEY �y�� � 1∕2 in the qubit
state ρ � 1

2.)

As the expectation value of the qubit observable �X � Y �∕ffiffiffi
2

p
in any arbitrary qubit state is constrained to be less than 1

(the maximum eigenvalue of the observable), evidently the con-
ditional expectation value of the observable �X � Y �∕ ffiffiffi

2
p

(evaluated from Bob’s measurement outcomes x 0, y 0 of X ,
Y—which are conditioned by Alice’s POVM outcomes x, y
of the same observables) also is restricted, i.e.,��X � Y �ffiffiffi

2
p

�
x;y

� 1ffiffiffi
2

p �hX ix � hY iy�

� 1ffiffiffi
2

p
�X

x 0
P�x 0jx�x 0 �

X
y 0
P�y 0jy�y 0

�
≤ 1:

(13)

If the assemblages fρx��1j1g, fρy��1j1g, obtained after
Alice performs her measurements, constitute a HS structure,
i.e., ρx��1j1 �

P
λg�λ�p�xj1; λ�ρλ and ρy��1j1 �P

λg�λ�p�yj1; λ�ρλ, then Bob’s measurements lead to a linear
temporal steering inequality (obtained following the arguments
outlined by Cavalcanti et al. [22] for the derivation of linear
EPR steering criteria for two spatially separated qubits):����

X
x��1

p�x�xhX ix �
X
y��1

p�y�yhY iy
���� ≤

ffiffiffi
2

p
. (14)

Substituting the conditional probabilities in Eqs. (11) and (12)
to evaluate the expectation values hX ix , hY iy and simplifying,
the linear temporal inequality [Eq. (14)] results in the con-
straint

η ≤
1ffiffiffi
2

p �15�

on the unsharpness parameter—which is exactly the condition
for joint measurability [6,11,47] of the qubit observables X , Y
using the POVMs fEX �x� � 1

2 �1� ηxX �; x � �1g and
fEY �y� � 1

2 �1� ηyY �; y � �1g. The temporal steering in-
equality [Eq. (14)] is violated for 1ffiffi

2
p < η ≤ 1, i.e., when

Alice’s POVMs are incompatible.

4. CONCLUSIONS

We have illustrated temporal steering phenomena in a single
quantum system by developing the notion of a HS structure—
which is analogous to the LHS model for spatially separated
systems. Falsification of the HS model implies temporal steer-
ability. Extending the arguments of recent papers [16,17], we
have established a relation between the incompatibility of
quantum measurements and temporal steering phenomena.
Our results highlight that a set of measurements are incompat-
ible if and only if they can be used to demonstrate temporal
steering in any quantum state. The connection between mea-
surement incompatibility and temporal steering opens up new
avenues for exploring temporal steering inequalities to infer
about (non) joint measurability. Further, following similar lines
of investigation on nonlocal steering versus Bell nonlocality
[26] of spatially separated states, it would be of interest to in-
vestigate whether Leggett–Garg inequalities and temporal steer-
ing inequalities carry identical inferences about measurement
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invasiveness [48], or whether they bring forth its different
manifestations. We leave open these aspects for future
investigations.

One of us (J. P.) acknowledges support from UGC-BSR,
Government of India.
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