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Abstract. Most three dimensional constitutive relations that have been developed to de-
scribe the behavior of bodies are correlated against one dimensional and two dimensional
experiments. What is usually lost sight of is the fact that infinity of such three dimensional
models may be able to explain these experiments that are lower dimensional. Recently, the
notion of maximization of the rate of entropy production has been used to obtain consti-
tutive relations based on the choice of the stored energy and rate of entropy production,
etc. In this paper we show different choices for the manner in which the body stores energy
and dissipates energy and satisfies the requirement of maximization of the rate of entropy
production that can all describe the same experimental data. All of these three dimen-
sional models, in one dimension, reduce to the model proposed by Burgers to describe the
viscoelastic behavior of bodies.
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1. Introduction

An observation of a phenomenon or a set of phenomena leads one to conjecture

as to its cause and forms the basis for the crude first step in the development of

a model. An experiment is then deliberately and carefully fashioned to test and

refine the conjecture. Unfortunately, this procedure is most daunting as one is not

usually accorded the luxury of being able to perform sufficiently general three dimen-

sional experiments while the models that one would like to develop are fully three

dimensional ones. Most of the general three dimensional constitutive models that

are being used in continuum mechanics have been developed on the basis of infor-

mation gleaned from one or two dimensional special experiments. It does not take
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much mathematical acumen to recognize the dangers fraught in the process of such

generalizations as infinity of three dimensional models could be capable of explain-

ing the lower dimensional experimental data. Of course, one does not corroborate

a three dimensional model by merely comparing it against data from a single one

dimensional experiment. One tests the model against several different experiments,

but these experiments tend to be simple experiments in view of the extraordinary

difficulties in developing an experimental program that can truly test the full three

dimensionality of the model, especially when the response that is being described is

complex. In order to develop a meaningful three dimensional model on the basis of

experimental data in lower dimensions, one needs to be guided by enormous physical

insight and intuition. This is easier said than done and in fact most models that

are currently in use are based on flimsy and tenuous rationale. In fact, models are

not based on any experiment or any set of experiments has a great deal of validity.

The models stem from tremendous physical insight and experiments are best used

to falsify theoretical propositions. Of course, in the hands of an expert modeler

experiments can provide some insight into the development of a model.

One might be tempted to think that the dictates of physics would greatly aid in

the development of models from experimental data. For instance, the second law

of thermodynamics could play a stringent role in the class of admissible models.

Similarly, invariance requirements such as Galilean invariance could also provide

restrictions on the class of allowable models. Unfortunately, the sieve provided by

all such restrictions is far too coarse as it permits several models to go through that

exhibit undesirable properties.

While modeling, one might start directly by assuming a constitutive relation be-

tween the stress and other relevant quantities. This relation could be an explicit

expression (function) for the stress in terms of kinematical variables as in the case

of Hooke’s law or the Navier-Stokes model, or it could be an implicit relation as in

the case of many rate type non-Newtonian fluid models. Assuming such constitu-

tive relations implies six scalar constitutive relations (in the case of the stress being

symmetric). One could also assume forms for the manner in which energy is stored

and entropy is produced by the body and determine the constitutive relation for

the stress by appealing to a general thermodynamic framework that has been put in

place (see the review articles by Rajagopal and Srinivasa [12], [13] for details of the

framework). The framework casts the second law as an equation that defines the

rate of entropy production (see Green and Naghdi [2], Rajagopal and Srinivasa [10])

and appeals to the maximization of the rate of entropy production (when Ziegler [17]

appealed to such a requirement, the context within which he made such an appeal

was different from that required by Rajagopal and Srinivasa [12], [13]). The general

thermodynamic framework has been used to describe a plethora of disparate material
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response: viscoelasticity, inelasticity, twinning, phase transition in solids, behavior of

single crystals super alloys, mixtures, inhomogeneous fluid, etc. While the method

seems exceedingly powerful, there are some interesting nuances concerning its ap-

plication that the modeler should be aware of, and in this paper by constructing

explicit examples we illustrate these delicate issues. It is important to recognize that

one can obtain the same constitutive relations for the stress by choosing different

forms for the stored energy functions and the rate of entropy production (see Rao

and Rajagopal [16] who develop the non-linear three dimensional Maxwell model by

choosing two different sets of stored energy and rate of dissipation). In fact, it is

possible that several sets of stored energy and rate of dissipation function can lead

to the same model. We illustrate this by considering four different sets of stored

energy and rate of dissipation to obtain the model developed by Burgers [1], and

these four choices are different from a previous choice made by Murali Krishnan

and Rajagopal [6]. It is interesting to note that by making the choice of two scalar

functions, we can arrive at a constitutive relation for the stress, a tensor with six

scalar components. Many of the one-dimensional models that have been developed

to describe the response of viscoelastic materials consisted in appealing to an analogy

to mechanical systems of springs (means for storing energy), and dashpots (means

for dissipating energy/producing entropy), though in his seminal paper on viscoelas-

ticity Maxwell [5] did not appeal to such an analogy. Within the context of these

mechanical systems, it becomes clear how one can get the same form for the stress

by choosing different stored energy and rate of entropy production functions as one

can choose different networks of springs and dashpots to effect the same response.

In 1934 Burgers [1] developed the following one-dimensional model by appealing

to a mechanical analog:

(1.1) σ + p1σ̇ + p2σ̈ = q1ε̇+ q2ε̈,

where p1 and p2 are relaxation times, q1 and q2 are viscosities, and σ and ε denote

the stress and the linearized strain respectively. A three dimensional generalization

of that was provided by Murali Krishnan and Rajagopal [6], within the context of

a thermodynamic basis that requires that among an admissible class of constitutive

relations that which is selected is the one that maximizes the rate of entropy produc-

tion. The second law merely requires that the entropy production be non-negative

and one would expect the requirement of maximization of the rate of entropy to cull

the class of rate of entropy production functions. As we shall restrict our analysis to

a purely mechanical context, instead of making a choice for the rate of entropy pro-

duction we shall make a choice for the rate of dissipation (the rate at which working

is converted to heat) which is the only way in which entropy is produced within the

context of interest.
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We shall assume that the class of bodies we are interested in modeling are vis-

coelastic fluids that are capable of instantaneous elastic response. A body that exists

in a configuration κt under the action of external stimuli, on the removal of the ex-

ternal stimuli could attain a configuration κp(t), which is referred to as a natural

configuration corresponding to the configuration κt. However, more than one nat-

ural configuration could be associated with the configuration κt based on how the

external stimuli are removed, whether instantaneously, slowly, etc. The natural con-

figuration that is accessed depends on the process class allowed. In this study, we

shall assume the natural configuration that is achieved is that due to an instanta-

neous unloading to which the body responds in an instantaneous elastic manner. A

detailed discussion of the role of natural configurations can be found in Rajagopal [8]

and the review article by Rajagopal and Srinivasa [12]. Even within the context of

an instantaneous elastic unloading, it might be possible that the body could go to

different natural configurations κpi(t), i = 1, . . . , n.

When one provides a spring-dashpot mechanical analogy for a viscoelastic material

one obtains a constitutive equation that holds at a point, i.e., the point is capable

of storing energy like the various springs and dissipate energy as the dashpots, but

it also has to take into account the arrangement of the springs and the dashpots.

The central idea of Mixture Theory is that the various constituents of the mixture

co-exist. That is, in a homogenized sense at a point, the model has to reflect the

combined storage of energy in the springs and the dissipation of the dashpots based

on the way in which they are arranged. Of course, a point is a mathematical creation

that does not exist, and what is being modeled is a sufficiently small chunk in the

body. This chunk can store and dissipate energy in different ways. The point of

importance is that various arrangements of springs and dashpots can lead to the

same net storage of energy of the springs and the dissipation by the dashpots. Put

differently, the chunk can respond in an identical manner to different ways in which

the springs and dashpots are put together. This is essentially the crux of the paper.

We have five different three dimensional models, four that are developed in this

paper and one that was developed by Murali Krishnan and Rajagopal [6], and all

five three dimensional models could claim equal status as generalizations of the one

dimensional model developed by Burgers. Recently, Málek and Rajagopal [4] used

the thermodynamic framework that we have discussed to obtain a model for two

viscous liquids. In this paper, we have a more complicated mixture in that we

have two different solids coexisting with two different dissipative fluids. We do not

allow for relative motion between the constituents, we assume they coexist and move

together.

The organization of the paper is as follows. In Section 2 we introduce the kine-

matics that is necessary for the study and the basic balance laws for mass, linear
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and angular momentum. We also introduce the second law of thermodynamics. This

introduction is followed by a discussion of four different models which all reduce to

Burgers’ one dimensional model in Sections 3–6. We make a few final remarks in the

last section.

2. Preliminaries

Let κR(B) and κt(B) denote respectively the reference configuration of the body

and the configuration of the body B at time t. LetX denote a typical point belonging

to κR(B) and x the same material point at time t, belonging to κt(B). Let χκR
denote

a sufficiently smooth mapping that assigns to each X ∈ κR(B) a point x ∈ κt(B),

i.e.,

(2.1) x := χκR
(X, t).

The velocity v, the velocity gradient L and the deformation gradient FκR
are defined

through

(2.2) v :=
∂χκR

∂t
, L :=

∂v

∂x
, FκR

:=
∂χκR

∂X
.

It immediately follows that

(2.3) L = ḞκR
F−1

κR
.

We denote the symmetric part of the velocity gradient by D, i.e.,

(2.4) D :=
1

2
(L + LT ).

The left and right Cauchy-Green stretch tensors BκR
and CκR

are defined through

(2.5) BκR
:= FκR

FT
κR
, CκR

:= FT
κR

FκR
.

Let κp(t) denote the preferred natural configuration associated with the configura-

tion κt. We define Fκp(t)
as the mapping from the tangent space at a material point

in κp(t) to the tangent space at the same material point at κt (see Fig. 1). We then

define

(2.6) Bκp(t)
:= Fκp(t)

FT
κp(t)

, Cκp(t)
:= FT

κp(t)
Fκp(t)

.
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The mapping G is defined through (see Fig. 1)

(2.7) G := FκR→κp(t)
:= F−1

κp(t)
FκR

.

We can then define the tensor CκR→κp(t)
in a manner analogous to CκR

through

(2.8) CκR→κp(t)
:= GTG,

and it follows that

(2.9) Bκp(t)
= FκR

C−1
κR→κp(t)

FT
κR
.

κR

κp(t)

κt

Fκp(t)

FκR

G

Figure 1. Representation of the natural configuration κp(t) corresponding to the current
configuration κt and the relevant mappings from the tangent spaces of the same
material point in κR, κt and κp(t).

We shall also record the balance of mass (assuming incompressibity) and the bal-

ance of linear and angular momentum (in the absence of body couples):

(2.10) div(v) = 0, ̺v̇ = div(TT ) + ̺b, T = TT ,

where ̺ is the density, v is the velocity, T is the Cauchy stress tensor, b is the specific

body force, div(·) is the divergence operator with respect to the current configuration

and (·)T denotes the transpose. In addition, the local form of balance of energy is

(2.11) ̺ε̇ = T · L − div(q) + ̺r,

where ε denotes the specific internal energy, q denotes the heat flux vector and r de-

notes the specific radiant heating. We shall invoke the second law of thermodynamics
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in the form of the reduced energy dissipation equation, and for isothermal processes

it takes the form

(2.12) T ·D − ̺ψ̇|isothermal := ξ > 0,

where ψ is the specific Helmholtz potential, ξ denotes the rate of dissipation (specif-

ically the rate of entropy production).

When one works with implicit constitutive models of the form

(2.13) f(T,D) = 0,

where T is the Cauchy stress, or more general models of the form

(2.14) f(T,
∇

T, . . . ,

(n)

∇

T ,D,
∇

D, . . . ,

(n)

∇

D) = 0,

where the superscript
(n)

∇ stands for the n Oldroyd derivatives [7], T and D seem to

have the same primacy in that the maximization could be with respect to T or D.

However, the superficial assumption thatT andD have the same primacy is incorrect

as T (or the applied traction which leads to the stresses) causes the deformation (the

appropriate kinematic tensor). In order to get sensible constitutive equations one

ought to keep D fixed and vary T to find how a body responds to the stress that is a

consequence of the applied traction. This comes up naturally in the development of

implicit constitutive theories (see Rajagopal and Srinivasa [15], [14]). More recently,

Rajagopal [9] has discussed at length the implicit nature of constitutive relations.

When one thinks along classical terms of the stress being given explicitly in terms

of the kinematical variables, it is natural to hold T fixed and maximize with respect

to the kinematical variable, in our case D. This is what is followed in this work.

3. Model 1

3.1. Preliminaries

Let κR denote the undeformed reference configuration of the body. We shall

assume that the body has associated with it two natural configurations, i.e., con-

figurations to which it can be instantaneously elastically unloaded, that correspond

to two mechanisms for storing energy (within one dimensional mechanical analog—

two springs). Interestingly, one can get from the reference configuration to the two

evolving natural configurations denoted by κpi(t), i = 1, 2 (see Fig. 2), via two dis-

sipative responses. Let Fi, i = 1, 2, 3, denote the gradients of the motion1 from κR

1 In general, these are appropriate mappings of tangent spaces containing the same material
point in different configurations.
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to κp1(t), κp1(t) to κp2(t), and κp2(t) to κt, respectively. Also, we shall define the left

Cauchy-Green stretch tensors

(3.1) Bi := FiF
T
i , i = 1, 2, 3,

and the velocity gradients with their corresponding symmetric parts

(3.2) Li := ḞiF
−1
i , Di :=

1

2
(Li + LT

i ), i = 1, 2, 3.

κR
κt

κp1(t) κp2(t)

F1

F2

F3

F = F3F2F1

Fp = F3F2

dissipative response
elastic response

elastic response

dissipative response

Figure 2. Representation illustrating the natural configurations for model 1. κR is the refer-
ence configuration, κt denotes the current configuration, and κp1(t), κp2(t) denote
the two evolving natural configurations. The body dissipates energy like a viscous
fluid as it moves from κR to κp1(t), and from κp1(t) to κp2(t). Also, as shown, the
body stores energy during its motion from κp2(t) to κt, and from κp1(t) to κt.

Also, we note that2

(3.3) F = F3F2F1.

Let us denote the gradient of the motion from κp1(t) to κt by Fp; then

(3.4) Fp = F3F2

2Henceforth, we shall denote FκR by F.
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and

(3.5) F = FpF1.

The left Cauchy-Green stretch tensor and the velocity gradient with its symmetric

part corresponding to Fp are

(3.6) Bp := FpF
T
p , Lp := ḞpF

−1
p , Dp :=

1

2
(Lp + LT

p ),

respectively.

Now, taking the time derivative of Eq. (3.5) we get

(3.7) Ḟ = ḞpF1 + FpḞ1 ⇒ LF = LpFpF1 + FpL1F1 ⇒ L = Lp + FpL1F
−1
p .

Similarly, taking the time derivative of Eq. (3.4), we arrive at

(3.8) Lp = L3 + F3L2F
−1
3 .

Now,

(3.9) Ḃp = FpḞ
T
p + ḞpF

T
p = FpF

T
p LT

p + LpFpF
T
p = BpL

T
p + LpBp.

Post-multiplying Eq. (3.7) by Bp, pre-multiplying the transpose of Eq. (3.7) by Bp,

and adding, we obtain

(3.10)
∇

Bp = −2FpD1F
T
p ,

where
∇

Bp := Ḃp−BpL
T −LBp is the Oldroyd derivative of Bp. In a similar fashion,

using Eq. (3.8) and the relation Ḃ3 = B3L
T
3 + L3B3, we get

(3.11)
∇p

B 3 = −2F3D2F
T
3 ,

where
∇p

B 3 := Ḃ3 −B3L
T
p −LpB3. This is the same as the Oldroyd derivative of B3

when the natural configuration κp1(t) is made the reference configuration.

We also note from Eq. (3.3) that

(3.12) Ḟ = Ḟ3F2F1+F3Ḟ2F1+F3F2Ḟ1 ⇒ L = L3+F3L2F
−1
3 +F3F2L1F

−1
2 F−1

3 ,
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and hence

I · Ḃ3 = I · (L3B3 + B3L
T
3 )(3.13)

= I · (LB3 − F3L2F
T
3 − F3F2L1F

−1
2 FT

3 + B3L
T − F3L

T
2 FT

3

− F3F
−T
2 LT

1 FT
2 FT

3 )

= 2B3 ·D − 2C3 · D2 − C3 · (F2L1F
−1
2 + F−T

2 LT
1 FT

2 ).

The relations derived in this sub-section are sufficient for the purpose of analysing

this model. In the following sub-section, we shall constitutively specify the forms

for storage and rate of dissipation functions, and then we shall maximize the rate

of dissipation subject to appropriate constraints (incompressibility and the energy

dissipation equation), to determine the constitutive relation.

3.2. Constitutive assumptions

Let us assume the specific stored energy ψ and the rate of dissipation ξ of the

form3

(3.14) ψ ≡ ψ(B3,Bp), ξ ≡ ξ(D1,D2).

In particular, assuming that the instantaneous elastic responses from κp1(t) and

κp1(t) are isotropic, and in virtue of incompressibility of the body, we choose

(3.15) ψ(B3,Bp) =
µ3

2̺
(I ·B3 − 3) +

µp

2̺
(I · Bp − 3)

and

(3.16) ξ(D1,D2) = η′1D1 · D1 + η′2D2 · D2.

The above assumption means that the body possesses instantaneous elastic re-

sponse from the two evolving natural configurations (κp1(t), κp2(t)) to the current

configuration κt (Fig. 2); the body stores energy like a neo-Hookean solid during

its motion from κp1(t) to κt, and from κp2(t) to κt. In addition, the response is

linear viscous fluid-like as the body moves from κR to κp1(t), and from one natural

configuration (κp1(t)) to the other (κp2(t)).

3One can also choose the rate of dissipation function to depend on the stretch, i.e., to be of
the form ξ ≡ ξ(D1,D2,B3,Bp). The resulting constitutive relations will be a variant of
the relations obtained when ξ is of the form given in Eq. (3.14). The constitutive relations
obtained by using ξ(D1,D2,B3,Bp) have relaxation times which depend on the stretch.
Upon linearization, the two constitutive relations take the same form. Rajagopal and
Srinivasa have discussed this issue for the Maxwell fluid in [11].
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Also, since we have assumed that the material’s instantaneous elastic response is

isotropic, we shall choose the configurations κp1(t), κp2(t) such that

(3.17) F3 = V3, Fp = Vp,

where V3, Vp are the right stretch tensors in the polar decomposition, i.e., the

natural configurations are appropriately rotated.

Finally, using Eqs. (3.13) and (3.17), we get

(3.18) I · Ḃ3 = 2B3 ·
[

D − D2 −
1

2
(F2L1F

−1
2 + F−T

2 LT
1 FT

2 )
]

,

and similarly

(3.19) I · Ḃp = 2Bp.(D − D1).

Substituting Eqs. (3.15), (3.16) into (2.12) and using the relations in Eqs. (3.18),

(3.19), we obtain

T · D− µ3B3 ·
[

D − D2 −
1

2
(F2L1F

−1
2 + F−T

2 LT
1 FT

2 )
]

(3.20)

− µpBp · (D − D1)

= η′1D1 · D1 + η′2D2 · D2,

which by further simplification leads to

(T − µ3B3 − µpBp) · D + µ3B3 · D2 + µpBp ·D1(3.21)

+
µ3

2
B3 · (F2L1F

−1
2 + F−T

2 LT
1 FT

2 )

= η′1D1 · D1 + η′2D2 · D2·

We shall assume that the body can undergo only isochoric motions and so

(3.22) tr(D) = 0.

Also, since the body can actually attain the two natural configurations, the incom-

pressibility constraint implies that

(3.23) tr(D1) = 0, tr(D2) = 0,

where tr(·) is the trace of the second order tensor.
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Since the right-hand side of Eq. (3.21) does not depend on D, by virtue of

Eq. (3.22) we have

(3.24) T = −pI + µ3B3 + µpBp,

where −pI is the reaction stress due to the constraint of incompressibility. Hence,

Eq. (3.21) reduces to

(3.25) µ3B3 ·D2+µpBp ·D1+
µ3

2
B3 ·(F2L1F

−1
2 +F−T

2 LT
1 FT

2 ) = η′1D1 ·D1+η′2D2 ·D2.

Following Rajagopal and Srinivasa [11], we maximize the rate of dissipation in

Eq. (3.16) along with the constraints in Eqs. (3.23), (3.25), by varying D1, D2 for

fixed B2, B3. We maximize the auxiliary function Φ defined by

Φ := η′1D1 ·D1 + η′2D2 · D2(3.26)

+ λ1

[

η′1D1 ·D1 + η′2D2 ·D2 − µ3B3 · D2 − µpBp ·D1

−
µ3

2
B3 · (F2L1F

−1
2 + F−T

2 LT
1 FT

2 )
]

+ λ2I · D1 + λ3I ·D2.

Now, setting ∂Φ/∂D2 = 0, ∂Φ/∂D1 = 0, and dividing the resulting equations by λ1

and λ2, respectively, for λ1, λ2 6= 0, we get (also see appendix)

µ3B3 =
(λ1 + 1

λ1

)

2η′2D2 +
λ3

λ1
I,(3.27)

µpBp +
µ3

2
(FT

2 B3F
−T
2 + F−1

2 B3F2) =
(λ1 + 1

λ1

)

2η′1D1 +
λ2

λ1
I.

Using Eq. (3.27) in Eq. (3.25), we obtain

(3.28)
λ1 + 1

λ1
=

1

2
−

µ3B3 · F2W1F
−1
2

2η′1D1 ·D1 + 2η′2D2 · D2
,

whereW1 := 1
2 (L1 − LT

1 ). Hence,

T = − pI + µ3B3 + µpBp,(3.29)
µ3

2
(FT

2 B3F
−T
2 + F−1

2 B3F2) + µpBp = − p′I + η1D1,

µ3B3 = − p′′I + η2D2,

where p′, p′′ are the Lagrange multipliers with

−p′ =
1

3
[µ3 tr(B3) + µp tr(Bp)], −p′′ =

1

3
µ3 tr(B3),(3.30)

η1 = 2
(λ1 + 1

λ1

)

η′1, η2 = 2
(λ1 + 1

λ1

)

η′2.
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Now, Eqs. (3.10), (3.11) can be re-written as

(3.31) D1 = −
1

2
V−1

p

∇

BpV
−1
p , D2 = −

1

2
V−1

3

∇p

B3V
−1
3 .

Using Eq. (3.31 b) in Eq. (3.29 c) and post-multiplying and pre-multiplying by V3,

we have

(3.32) µ3B
2
3 =

1

3
µ3 tr(B3)B3 −

η2
2

∇p

B3.

In addition, using Eq. (3.31 a) in Eq. (3.29b), post-multiplying and pre-multiplying

by Vp and using Eq. (3.4), we get

(3.33)
µ3

2
(BpB3 + B3Bp) + µpB

2
p =

1

3
[µ3 tr(B3) + µp tr(Bp)]Bp −

η1
2

∇

Bp.

Notice, from Eqs. (3.32), (3.33), that the evolution of the natural configura-

tions κp1(t) and κp2(t) are coupled. These two equations are to be solved simul-

taneously to determine their evolution. We shall denote µ3B3, µpBp by S1, S2,

respectively. Then, the final constitutive relations—Eqs. (3.29 a), (3.32), (3.33)—

reduce to

T = − pI + S1 + S2,(3.34)

S2
1 =

1

3
tr(S1)S1 −

η2
2

∇p

S1,

1

2
(S2S1 + S1S2) + S2

2 =
1

3
[tr(S1) + tr(S2)]S2 −

η1
2

∇

S2.

In the next sub-section we shall show that the above constitutive model reduces

to Burgers’ model in one dimension.

3.3. Reduction of the model to one dimensional Burgers’ model

In this sub-section we shall first linearize the constitutive model given by Eq. (3.29)

(we shall use Eq. (3.29), here, instead of Eq. (3.34), for the sake of simplicity) by

assuming the elastic response is small (we shall define what we mean by small,

precisely, later). Then we shall show that, in one dimension, the equations reduce to

the one dimensional linear model due to Burgers (see Eq. (1.1)).

Now, Eq. (3.29 c) can be re-written as

(3.35) µ3(B3 − I) = µ3

[1

3
tr(B3) − 1

]

I + η2D2.
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If the displacement gradient with elastic response is small, i.e.,

(3.36) max
X∈B
t∈R

∥

∥

∥

∂u(X, t)

∂X

∥

∥

∥
= O(γ), γ ≪ 1,

then

(3.37) ‖Bi − I‖ = O(γ), γ ≪ 1, i = 3, p,

and hence

(3.38) tr(Bi) = 3 + O(γ2), i = 3, p,

and so the first term on the right-hand side of Eq. (3.35) can be dropped for small

displacement gradient and Eq. (3.35) reduces to

(3.39) µ3(B3 − I) = η2D2.

If λi (i = 1, 2, 3, p or no subscript) is the stretch, in one dimension, corresponding

to the deformation gradient Fi, then λ
2
i and λ̇i/λi are the equivalent values in one

dimension corresponding to Bi and Di. If εi is the true strain for the stretch λi,

then εi = lnλi and so ε̇i = λ̇i/λi. Hence, Eq. (3.29 c) reduces to

(3.40) µ3(λ
2
3 − 1) = η2

λ̇2

λ2
,

or

(3.41) µ3(e
2ε3 − 1) = η2ε̇2,

which under the assumption of small displacement gradient (and hence ε3 ≪ 1)

reduces to

(3.42) 2µ3ε3 = η2ε̇2.

Following a similar analysis in one dimension, Eq. (3.29 b) becomes

(3.43) 2µ3ε3 + 2µpεp = η1ε̇1,

and Eq. (3.29 a) reduces to

(3.44) σ = 2µ3ε3 + 2µpεp,
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where σ is the one dimensional stress. In addition, Eq. (3.3) reduces to

(3.45) λ = λ1λ2λ3,

and so

(3.46) ε = ε1 + ε2 + ε3.

Similarly, Eqs. (3.4), (3.5) reduce to

(3.47) ε = εp + ε1, εp = ε2 + ε3.

Eqs. (3.42)–(3.44), (3.46), (3.47) are, in fact, the equations obtained if we have the

spring-dashpot arrangement shown in Fig. 3 (a).

η1

η2 2µ3

2µp

(a)

2µ3

η1 2µ2

ηG

(b)

η1 2µ3

η2

2µ2

(c)

η1 2µ2

2µ4
η3

(d)

Figure 3. Various spring-dashpot arrangements which reduce to the one-dimensional Burg-
ers’ fluid model (Eq. (1.1)).

We shall now show that these equations (i.e., Eqs. (3.42)–(3.44), (3.46), (3.47))

reduce to the form of Eq. (1.1). Now, differentiating Eq. (3.47 b) with respect to

time and using Eq. (3.42), we obtain

(3.48) ε̇p =
2µ3

η2
ε3 + ε̇3.

Also, differentiating Eq. (3.44) with respect to time and dividing by η2, we find

(3.49)
σ̇

η2
=

2µ3

η2
ε̇3 +

2µp

η2
ε̇p,
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and differentiating Eq. (3.44) twice with respect to time and dividing by 2µ3 leads

to

(3.50)
σ̈

2µ3
= ε̈3 +

µp

µ3
ε̈p.

We add Eqs. (3.49), (3.50) and use Eq. (3.48) to get

(3.51)
σ̇

η2
+

σ̈

2µ3
=

2µp

η2
ε̇p +

(

1 +
µp

µ3

)

ε̈p.

From Eqs. (3.43) and (3.44) we obtain

(3.52) σ = η1ε̇1 = η1(ε̇− ε̇p), or, ε̇p = ε̇−
σ

η1
.

Using Eq. (3.52) in Eq. (3.51) leads to

(3.53)
2µp

η1η2
σ +

( 1

η1
+

µp

µ3η1
+

1

η2

)

σ̇ +
σ̈

2µ3
=

2µp

η2
ε̇+

(

1 +
µp

µ3

)

ε̈,

which can be re-written as

(3.54) σ +
( η2

2µp

+
η2
2µ3

+
η1
2µp

)

σ̇ +
η1η2

4µpµ3
σ̈ = η1ε̇+

η1η2
2µp

(

1 +
µp

µ3

)

ε̈.

Eq. (3.54) is in the same form as Eq. (1.1), with

(3.55) p1 =
η2
2µp

+
η2
2µ3

+
η1
2µp

, p2 =
η1η2

4µpµ3
, q1 = η1, q2 =

η1η2
2µp

(

1 +
µp

µ3

)

.

4. Model 2

4.1. Preliminaries

Once again, let κR denote the reference configuration of the body. We shall assume

that the body has two evolving natural configurations (denoted by κp1(t), κp2(t)), but

the manner in which they store the energy is different from that considered previously,

with Fi, i = 1, 2, 3, being the gradients of the motion as discussed in model 1. We

shall also use the definitions in Eqs. (3.1), (3.2). Thus, Eq. (3.3) applies here too. In

addition, let us call the gradient of the motion from κR to κp2(t) by FG (see Fig. 4).

It immediately follows that

(4.1) FG = F2F1.
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κR
κt

κp1(t) κp2(t)

F1

F2

F3

F = F3F2F1

disspative response elastic response

elastic response

dissipative response

FG = F2F1

Fp

Figure 4. Representation illustrating the natural configurations for model 2. The body
dissipates like a linear viscous fluid during its motion from κR to κp2(t), and
from κR to κp1(t). The body stores energy like a neo-Hookean solid during its
motion from κp1(t) to κp2(t) and from κp2(t) to κt.

We shall denote the velocity gradient and its symmetric part corresponding to FG

by

(4.2) LG := ḞGF−1
G , DG :=

1

2
(LG + LT

G).

Also, from Eqs. (3.3), (4.1),

(4.3) F = F3FG.

Following a procedure similar to the one followed previously for model 1, it can be

shown that

DG = D2 +
1

2
(F2L1F

−1
2 + F−T

2 LT
1 FT

2 ),(4.4)

D = D3 +
1

2
(F3LGF−1

3 + F−T
3 LT

GFT
3 ),

along with

(4.5)
∇

B3 = −2F3DGFT
3 ,

∇G

B 2 = −2F2D1F
T
2 ,
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where
∇G

A := Ȧ−ALT
G −LGA is the Oldroyd derivative when the natural configura-

tion κp2(t) is the current configuration. In addition, from Eqs. (4.4) and (4.5), along

with the assumption that F2 = V2, F3 = V3 in virtue of the body being isotropic,

we get

(4.6) I · Ḃ2 = 2B2 · (DG − D1), I · Ḃ3 = 2B3.(D − DG).

These relations should suffice for our calculations for studying the response of

model 2.

4.2. Constitutive assumptions

For this model, we shall assume ψ, and ξ to be of the form

(4.7) ψ ≡ ψ(B2,B3), ξ ≡ ξ(D1,DG).

Now, assuming that the instantaneous elastic response is isotropic and the body

is incompressible, we choose

(4.8) ψ(B2,B3) =
µ2

2̺
(I ·B2 − 3) +

µ3

2̺
(I · B3 − 3),

and

(4.9) ξ(D1,DG) = η1D1 ·D1 + ηGDG ·DG.

The above assumption implies that the body possesses instantaneous elastic re-

sponse from the current configuration κt to the natural configuration κp2(t) and from

the natural configuration κp1(t) to the other natural configuration κp2(t). It stores

energy like a neo-Hookean solid in the course of these two motions. In addition, the

responses from the two natural configurations (κp1(t), κp1(t)) to the reference con-

figuration κR are purely dissipative, similarly to a linear viscous fluid. In fact, the

response of the body as it moves from κR to κp2(t) is similar to that of a “variant”

of an Oldroyd-B fluid (see Rajagopal and Srinivasa [11]), i.e., the natural configu-

ration κp2(t) evolves like that of an Oldroyd-B fluid with respect to the reference

configuration κR.

Substituting Eqs. (4.8), (4.9) in Eq. (2.12), using Eq. (4.6) and simplifying, we get

(4.10) (T−µ3B3) ·D+(µ3B3−µ2B2) ·DG +µ2B2 ·D1 = η1D1 ·D1 + ηGDG ·DG.

Since the right-hand side of Eq. (4.10) does not depend on D, the incompressibility

constraint, tr(D) = 0, leads to

(4.11) T = −pI + µ3B3,
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where −pI is the reaction stress due to the incompressibility constraint. Using

Eq. (4.11) in Eq. (4.10), we must have

(4.12) (µ3B3 − µ2B2) ·DG + µ2B2 · D1 = η1D1 · D1 + ηGDG ·DG.

Now, we maximize the rate of dissipation by varying D1, DG for fixed B2, B3

with the constraints

(4.13) tr(D1) = 0, tr(DG) = 0.

Finally, we arrive at the following set of equations:

T = − pI + µ3B3,(4.14)

µ3B3 − µ2B2 = − p′I + ηGDG,

µ2B2 = − p′′I + η1D1,

where p, p′, p′′ are the Lagrange multipliers with

p′ = −
1

3
[µ3 tr(B3) − µ2 tr(B2)],(4.15)

p′′ = −
1

3
µ2 tr(B2).

Pre-multiplying and post-multiplying Eqs. (4.14 b), (4.14 c) by V3 and V2 respec-

tively, Eqs. (4.14) reduce to

T = − pI + µ3B3,(4.16)

µ3B
2
3 − µ2V3B2V3 = − p′B3 −

ηG

2

∇

B3,

µ2B
2
2 = − p′′B2 −

η1
2

∇G

B2,

with Eqs. (4.15) holding. If we denote µ2B2, µ3B3 by S1, S2 respectively, then the

final constitutive relations for this model are

T = − pI + S2,(4.17)

S2
1 =

1

3
tr(S1)S1 −

η1
2

∇G

S1 ,

S2
2 −

√

S2S1

√

S2 =
1

3
[tr(S2) − tr(S1)]S2 −

ηG

2

∇

S2.

165



4.3. Reduction of the model to one dimensional Burgers’ model

For simplicity, we shall use Eqs. (4.14) for the reduction. Now, Eqs. (4.14 b,c) can

be re-written as

µ3(B3 − I) − µ2(B2 − I) =
1

3
[µ3(tr(B3) − 3) − µ2(tr(B2) − 3)I + ηGDG,(4.18)

µ2(B2 − I) =
1

3
µ2(tr(B2) − 3)I + η1D1.

Assuming that the displacement gradient associated with the elastic response is small,

we arrive at

(4.19) ‖Bi − I‖ = O(γ), γ ≪ 1, i = 2, 3.

The first term on the right-hand sides of Eqs. (4.18b,c) can be neglected. Then,

Eqs. (4.18) reduce to

µ3(B3 − I) − µ2(B2 − I) = ηGDG,(4.20)

µ2(B2 − I) = η1D1.

In one dimension, Eqs. (4.20) become

(4.21) µ3(λ
2
3 − 1) − µ2(λ

2
2 − 1) = ηG

λ̇G

λG

, µ2(λ
2
2 − 1) = η1

λ̇1

λ1
,

where λi (i = 1, 2, 3, G or no subscript) is the stretch, in one dimension, corresponding

to the right stretch tensor Vi. Using lnλi = εi (ε is the true strain) with the

assumption of εi ≪ 1, Eq. (4.21) reduces to

(4.22) 2µ3ε3 − 2µ2ε2 = ηG ˙εG, 2µ2ε2 = η1ε̇1.

In addition, Eq. (4.14 a) reduces to

(4.23) σ = 2µ3ε3.

Eq. (4.3) together with Eq. (4.1), in one dimension, reduces to

(4.24) ε = εG + ε3, or, εG = ε2 + ε1.

The spring-dashpot arrangement in Fig. 3 (b) also yields Eqs. (4.22), (4.23) along

with Eqs. (3.46), (4.24). These equations by simplification reduce to

(4.25) σ +
( η1

2µ2
+

η1
2µ3

+
ηG

2µ3

)

σ̇ +
η1ηG

4µ2µ3
σ̈ = (η1 + ηG)ε̇+

η1ηG

2µ2
ε̈,
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which is the same as Burgers’ one dimensional model (Eq. (1.1)) with

(4.26) p1 =
η1
2µ2

+
η1
2µ3

+
ηG

2µ3
, p2 =

η1ηG

4µ2µ3
, q1 = η1 + ηG, q2 =

η1ηG

2µ2
.

5. Model 3

5.1. Preliminaries

As with models 1 and 2, for this model we shall assume that the body has two

evolving natural configurations (κp1(t), κp1(t), see Fig. 5). We shall also use the

definition of Fi, i = 1, 2, 3 used for the previous models in addition to the definitions

in Eqs. (3.1), (3.2) and the relation Eq. (3.3). Further, we shall also choose F2 = V2

and F3 = V3. We recall from the preliminary discussion concerning models 1 and 2

that

(5.1) D2 = −
1

2
V−1

3

∇p

B3V
−1
3 , D1 = −

1

2
V−1

2

∇G

B2V
−1
2 .

These definitions and relations will be used in the following analysis.

κR
κt

κp1(t) κp2(t)

F1

F2

F3

F = F3F2F1

dissipative response
elastic response

F3F2

elastic response

Figure 5. Representation illustrating the natural configurations for model 3. The body’s
response is viscous fluid-like and elastic solid-like, during its motion from κR

to κpt(t), and from κp2(t) to κt, respectively. From κp1(t) to κp2(t), the response
is Kelvin-Voigt solid-like.
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5.2. Constitutive assumptions

For this model, we shall assume the specific stored energy ψ and the rate of

dissipation ξ to be of the form

(5.2) ψ ≡ ψ(B2,B3), ξ ≡ ξ(D1,D2).

Specifically, in virtue of the body being incompressible and isotropic, we choose,

(5.3) ψ(B2,B3) =
µ2

2̺
(I ·B2 − 3) +

µ3

2̺
(I · B3 − 3),

and

(5.4) ξ(D1,D2) = η′1D1 ·D1 + η′2D2.D2,

i.e., the body possesses instantaneous elastic response from the current configura-

tion κt to the natural configuration κp2(t) and stores energy like a neo-Hookean

solid. Also, the response of the body between κp1(t) to κp2(t) is similar to that of

a Kelvin-Voigt solid. The body also dissipates like a linear viscous fluid during its

motion from κR to κp1(t).

On substituting Eq. (5.3) into Eq. (2.12) and using Eq. (3.18) we get

T · D− µ2B2 · D2 − µ3B3 ·
[

D − D2 −
1

2
(F2L1F

−1
2 + F−T

2 LT
1 FT

2 )
]

(5.5)

= η′1D1 · D1 + η′2D2 · D2,

which reduces to

(T − µ3B3) · D + (µ3B3 − µ2B2) ·D2 +
µ3

2
B3 · (F2L1F

−1
2 + F−T

2 LT
1 FT

2 )(5.6)

= η′1D1 · D1 + η′2D2 · D2.

Using Eq. (5.6), we maximize the rate of dissipation with incompressibility as a

constraint, i.e.,

(5.7) tr(D) = tr(D1) = tr(D2) = 0,

by varying D, D1, D2 for fixed B2, B3, obtaining

T = −pI + µ3B3,(5.8)

µ3B3 − µ2B2 = −p′I + η2D2,
µ3

2
(FT

2 B3F
−T
2 + F−1

2 B3F2) = −p′′I + η1D1,
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where p, p′, p′′ are the Lagrange multipliers with

−p′ =
1

3
[µ3 tr(B3) − µ2 tr(B2)],(5.9)

−p′′ =
1

3
µ3 tr(B3),

and

(5.10) ηi = η′i

(

1 −
µ3B3 · F2W1F

−1
2

η′1D1 ·D1 + η′2D2 ·D2

)

, i = 1, 2.

Pre-multiplying and post-multiplying Eq. (5.8 b) byV3, pre-multiplying and post-

multiplying Eq. (5.8 c) by V2 and using Eq. (5.1), we find that

T = − pI + µ3B3,(5.11)

µ3B
2
3 − µ2V3B2V3 = − p′B3 −

η2
2

∇p

B3,

µ3

2
(B2B3 + B3B2) = − p′′B2 −

η1
2

∇G

B2,

along with Eq. (5.9).

If we denote µ3B3, µ2B2 by S1, S2 respectively, then the final form for the con-

stitutive relation can be given as

T = − pI + S1,(5.12)

S2
1 −

√

S1S2

√

S1 =
1

3
[tr(S1) − tr(S2)]S1 −

η2
2

∇p

S1,

1

2
(S2S1 + S1S2) =

1

3
tr(S1)S2 −

η1
2

∇G

S2 .

5.3. Reduction of the model to one dimensional Burgers’ model

Following the method used in 4.3, Eq. (5.8) in one dimension reduces to

σ = 2µ3ε3,(5.13)

2µ3ε3 − 2µ2ε2 = η2ε̇2,

2µ3ε3 = η1ε̇1.

The above set of equations can also be obtained from the spring-dashpot arrangement

in Fig. 3 (c).

Now, Eq. (5.13) can be re-written as

(5.14) σ = 2µ3ε3, σ = 2µ2ε2 + η2ε̇2, σ = η1ε̇1.
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Also, differentiating Eq. (3.46) with respect to time and using Eqs. (5.14 a,c) we

obtain

(5.15) ε̇ =
σ

η1
+

σ̇

2µ3
+ ε̇2.

Now, multiplying Eq. (5.15) by 2µ2, multiplying the derivative of Eq. (5.15) with

respect to time by η2, and adding these two equations along with Eq. (5.14 b) we get

(5.16)
2µ2

η1
σ +

(

1 +
η2
η1

+
µ2

µ3

)

σ̇ +
η2
2µ3

σ̈ = 2µ2ε̇+ η2ε̈,

re-written as

(5.17) σ +
( η1

2µ2
+

η2
2µ2

+
η1
2µ3

)

σ̇ +
η1η2

4µ2µ3
σ̈ = η1ε̇+

η1η2
2µ2

ε̈.

Thus, Eq. (5.17) has the same form as Eq. (1.1), with

(5.18) p1 =
η1
2µ2

+
η2
2µ2

+
η1
2µ3

, p2 =
η1η2

4µ2µ3
, q1 = η1, q2 =

η1η2
2µ2

.

6. Model 4

6.1. Preliminaries

Once again, we shall assume that the body has two natural configurations as-

sociated with it, denoted by κp1(t), κp2(t). However, in this model, the evolution

equations of the two natural configurations are not coupled and they evolve indepen-

dently (see Fig. 6). We shall denote the gradients of the motion from κR to κp1(t)

and from κp1(t) to κt by F1, F2. We shall also denote the gradients of the motion

from κR to κp2(t) and from κp2(t) to κt by F3, F4. It follows that

(6.1) F = F2F1 = F4F3.

The left stretch tensor, velocity gradient and its corresponding symmetric part are

denoted by

(6.2) Bi := FiF
T
i , Li := ḞiF

−1
i , Di :=

1

2
(Li + LT

i ), i = 1, 2, 3, 4.

Also, a straightforward calculation leads to

(6.3)
∇

B2 = −2F2D1F
T
2 ,

∇

B4 = −2F4D3F
T
4 .
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κR
κt

κp1(t)

κp2(t)

F1
F2

F4

F = F2F1 = F4F3

dissipative response

elastic response

elastic response

dissipative response

F3

Figure 6. Representation illustrating the natural configurations for model 4. The body’s
response is similar to that of a “mixture” of two Maxwell-like fluids with different
relaxation times.

6.2. Constitutive assumptions

Here we shall assume the specific stored energy ψ and the rate of dissipation ξ to

be of the form

(6.4) ψ ≡ ψ(B2,B4), ξ ≡ ξ(D1,D3).

As the material is isotropic and incompressible, we choose

(6.5) ψ(B2,B4) =
µ2

2̺
(I ·B2 − 3) +

µ4

2̺
(I · B4 − 3),

and

(6.6) ξ(D1,D3) = η1D1 · D1 + η3D3 · D3.

This means that the response of the natural configurations (κp1(t), κp2(t)) from the

current configuration is like that of a neo-Hookean solid and the response from the

reference configuration to the natural configurations is similar to that of a linear

viscous fluid. Thus, Burgers’ fluid can also be perceived as a “mixture” of two

Maxwell-like fluids with different relaxation times.
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We shall set

(6.7) F2 = V2, F4 = V4,

where V2, V4 are the right stretch tensors in the polar decomposition of F2, F4,

based on the assumption of isotropic elastic response. Hence, from Eq. (6.3) and

Eq. (6.7) we have

(6.8) I · Ḃ2 = 2B2 · (D − D1), I · Ḃ4 = 2B4 · (D − D3).

Inserting Eqs. (6.5), (6.6) in Eq. (2.12) and using Eq. (6.8), we get

(6.9) (T − µ2B2 − µ4B4) · D + µ2B2 · D1 + µ4B4 ·D3 = η1D1 ·D1 + η3D3 ·D3.

Using the constraint of incompressibility

(6.10) tr(D) = tr(D1) = tr(D3) = 0,

and Eq. (6.9), we maximize the rate of dissipation by varying D, D1, D3 for fixed

B2, B4 obtaining

T = − pI + µ2B2 + µ4B4,(6.11)

µ2B2 = − p′I + η1D1,

µ4B4 = − p′′I + η3D3,

where p, p′, p′′ are the Lagrange multipliers with

(6.12) −p′ =
1

3
µ2 tr(B2), −p′′ =

1

3
µ4 tr(B4).

Pre-multiplying and post-multiplying Eq. (6.11b) by V2 and Eq. (6.11 c) by V4 and

using Eq. (6.3), we arrive at

µ2B
2
2 = − p′B2 −

η1
2

∇

B2,(6.13)

µ4B
2
4 = − p′′B4 −

η3
2

∇

B4.

Eqs. (6.13 a,b) represent the evolution equations of the natural configurations (κp1(t),

κp2(t) respectively). If we denote µ2B2, µ4B4 by S1, S2 respectively, then the final

constitutive relations for model 4 are

T = − pI + S1 + S2,(6.14)

S2
1 =

1

3
tr(S1)S1 −

η1
2

∇

S1,

S2
2 =

1

3
tr(S2)S2 −

η1
2

∇

S2.

172



This model is a variation of the model proposed by Murali Krishnan and Rajago-

pal [6]. They considered stretch dependent dissipation, in contrast to our linear

viscous fluid type dissipation.

6.3. Reduction of the model to the one dimensional Burgers’ model

For this model, we shall once again assume that the displacement gradient asso-

ciated with the elastic response is small, and thus

(6.15) ‖Bi − I‖ = O(γ), γ ≪ 1, i = 2, 4.

Then Eq. (6.11) becomes

T = − pI + µ2B2 + µ4B4,(6.16)

µ2(B2 − I) = η1D1,

µ4(B4 − I) = η3D3,

which in one dimension reduces to

σ = 2µ2ε2 + 2µ4ε4,(6.17)

2µ2ε2 = η1ε̇1,

2µ4ε4 = η3ε̇3.

Further, Eq. (6.1) in one dimension reduces to

(6.18) ε = ε2 + ε1 = ε3 + ε4.

In fact, the spring-dashpot arrangement Fig. 3 (d) leads to Eqs. (6.17), (6.18). We

shall now show that these two equations by simplification lead to Eq. (1.1). Differ-

entiating Eq. (6.18) with respect to time and using Eqs. (6.17b,c) we have

ε̇ =
2µ2

η1
ε2 + ε̇2,(6.19)

ε̇ =
2µ4

η3
ε4 + ε̇4.

Eliminating ε4 from Eq. (6.17 a) and Eq. (6.19 b) leads to

(6.20) ε̇ =
σ

η3
+

σ̇

2µ4
−

2µ2

η3
ε2 −

µ2

µ4
ε̇2.

173



Solving Eq. (6.19 a) and Eq. (6.20) simultaneously, we get

ε2 =

(

1 + µ2/µ4

)

ε̇− σ/η3 − σ̇/2µ4

(2µ2/η1)
(

µ2/µ4 − η1/η3
) ,(6.21)

ε̇2 =

(

1 + η1/η3
)

ε̇− σ/η3 − σ̇/2µ4

η1/η3 − µ2/µ4
.

Now, differentiating Eq. (6.21 a) with respect to time and equating it to Eq. (6.21 b),

we get

(6.22) σ +
( η1

2µ2
+

η3
2µ4

)

σ̇ +
η1η3

4µ3µ4
σ̈ = (η1 + η3)ε̇+

η1η3
2µ2

(

1 +
µ2

µ4

)

ε̈.

This is the same as Eq. (1.1) with

(6.23) p1 =
η1
2µ2

+
η3
2µ4

, p2 =
η1η3

4µ3µ4
, q1 = η1 + η3, q2 =

η1η3
2µ2

(

1 +
µ2

µ4

)

.

7. Final Remarks

We have shown four sets of energy storage and rate of dissipation leading to four

different three dimensional constitutive relations, which reduce in one dimension

to the model developed by Burgers (Eq. (1.1)). Each of these three dimensional

models can claim equal status as representing a three dimensional generalization of

Burgers’ model. We have chosen two natural configurations instead of one in all of

these models. This is to incorporate two relaxation times possessed by Burgers-like

fluid bodies. For example, in an asphalt concrete mixture (which has been shown

to exhibit Burgers-like fluid behaviour), the aggregate matrix has a small relaxation

time whereas the asphalt mortar matrix has relatively larger relaxation time (see [6])

and the choice of two natural configurations seems natural. It is possible that several

other choices for the stored energy and the rate of dissipation could lead to the same

one dimensional model due to Burgers. Interestingly, the structure of the three

dimensional models that we have developed are quite distinct.
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8. Appendix

From Eq. (3.21) and Eq. (3.32) in [3]

(A.1)
∂f(L1)

∂D1
=

1

2

( ∂f

∂L1
+

( ∂f

∂L1

)T )

.

Hence, using Eq. (A.1), we arrive at

∂

∂D1
B3 · (F2L1F

−1
2 + F−T

2 LT
1 FT

2 ) =
∂

∂D1
2B3 ·F2L1F

−1
2(A.2)

=
∂

∂D1
2FT

2 B3F
−T
2 · L1

= FT
2 B3F

−T
2 + F−1

2 B3F2.
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