research

Bulk viscosity of spin-one color superconducting strange quark matter

Abstract

The bulk viscosity in spin-one color-superconducting strange quark matter is calculated by taking into account the interplay between the nonleptonic and semi-leptonic week processes. In agreement with previous studies, it is found that the inclusion of the semi-leptonic processes may result in non-negligible corrections to the bulk viscosity in a narrow window of temperatures. The effect is generally more pronounced for pulsars with longer periods. Compared to the normal phase, however, this effect due to the semi-leptonic processes is less pronounced in spin-one color superconductors. Assuming that the critical temperature of the phase transition is much larger than 40 keV, the main effect of spin-one color superconductivity in a wide range of temperatures is an overall increase of the bulk viscosity with respect to the normal phase. The corresponding enhancement factor reaches up to about 9 in the polar and A-phases, about 25 in the planar phase and about 29 in the CSL phase. This factor is determined by the suppression of the nonleptonic rate in color-superconducting matter and, therefore, may be even larger if all quark quasiparticles happen to be gapped.Comment: 10 pages, 4 multi-panel figures, including one new in the final versio

    Similar works

    Full text

    thumbnail-image

    Available Versions