60 research outputs found

    A Possible Approach to Site-Specific Insertion of Two Different Unnatural Amino Acids into Proteins in Mammalian Cells via Nonsense Suppression

    Get PDF
    AbstractThe site-specific insertion of an unnatural amino acid into proteins in vivo via nonsense suppression has resulted in major advances in recent years. The ability to incorporate two different unnatural amino acids in vivo would greatly increase the scope and impact of unnatural amino acid mutagenesis. Here, we show the concomitant suppression of an amber and an ochre codon in a single mRNA in mammalian cells by importing a mixture of aminoacylated amber and ochre suppressor tRNAs. This result provides a possible approach to site-specific insertion of two different unnatural amino acids into any protein of interest in mammalian cells. To our knowledge, this result also represents the only demonstration of concomitant suppression of two different termination codons in a single gene in vivo

    Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases

    Get PDF
    Dominant mutations in five tRNA synthetases cause Charcot–Marie–Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNA[superscript Gly] aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.National Institutes of Health (U.S.) (Grant GM17151

    Agmatidine, a modified cytidine in the anticodon of archaeal tRNA\u3csup\u3eIle\u3c/sup\u3e, base pairs with adenosine but not with guanosine

    Get PDF
    Modification of the cytidine in the first anticodon position of the AUA decoding tRNAIle (tRNAIle 2 ) of bacteria and archaea is essential for this tRNA to read the isoleucine codon AUA and to differentiate between AUA and the methionine codon AUG. To identify the modified cytidine in archaea, we have purified this tRNA species from Haloarcula marismortui, established its codon reading properties, used liquid chromatography–mass spectrometry (LC-MS) to map RNase A and T1 digestion products onto the tRNA, and used LC-MS/MS to sequence the oligonucleotides in RNase A digests. These analyses revealed that the modification of cytidine in the anticodon of tRNAIle 2 adds 112 mass units to its molecular mass and makes the glycosidic bond unusually labile during mass spectral analyses. Accurate mass LC-MS and LC-MS/MS analysis of total nucleoside digests of the tRNAIle 2 demonstrated the absence in the modified cytidine of the C2-oxo group and its replacement by agmatine (decarboxy-arginine) through a secondary amine linkage. We propose the name agmatidine, abbreviation C+, for this modified cytidine. Agmatidine is also present in Methanococcus maripaludis tRNAIle 2 and in Sulfolobus solfataricus total tRNA, indicating its probable occurrence in the AUA decoding tRNAIle of euryarchaea and crenarchaea. The identification of agmatidine shows that bacteria and archaea have developed very similar strategies for reading the isoleucine codon AUA while discriminating against the methionine codon AUG

    Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs

    Get PDF
    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes

    Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs

    Get PDF
    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.National Institutes of Health (U.S.) (GM17151)National Institutes of Health (U.S.) (GM22854)National Institutes of Health (U.S.) (ES017010)Singapore-MIT Alliance for Research and TechnologySingapore. National Research FoundationUnited States. Dept. of Energy (DE-FG36-08GO88055

    Translation initiation from the ribosomal A site or the P site, dependent on the conformation of RNA pseudoknot I in dicistrovirus RNAs

    Get PDF
    available in PMC 2010 July 31.Translation initiation of the second ORF of insect dicistrovirus RNA depends on an internal ribosomal entry site (IRES) in its intergenic region (IGR) and is exceptional in using a codon other than AUG and in not using the canonical initiator methionine tRNA. Studies in vitro suggest that pseudoknot I (PKI) immediately preceding the initiation codon occupies the ribosomal P site and that an elongator tRNA initiates translation from the ribosomal A site. Using dicistronic reporters carrying mutations in the initiation codon of the second ORF and mutant elongator or initiator tRNAs capable of reading these codons, we provide direct evidence for initiation from the A site in mammalian cells and, under certain conditions, also from the P site. Initiation from the A but not the P site requires PKI. Thus, PKI structure may be dynamic, and optimal IGR IRES-mediated translation of dicistroviral RNAs may require trans-acting factors to stabilize PKI.National Institutes of Health (U.S.) (grant GM17151)Japan. Ministry of Education, Culture, Sports, Science and Technology (Grants-In-Aid for Scientific Research on Priority Areas

    Obituary: Hans Gross

    No full text

    Har Gobind Khorana (1922–2011)

    No full text
    • …
    corecore