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1Department of Biology, 2Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
4School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68508, USA
5Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan

ABSTRACT

Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G
of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To
understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of
Haloarcula marismortui isoleucine tRNA (tRNA2

Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and
analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2

Ile binds exclusively to the
isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a
methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar
codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of
isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a
modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass
spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the
anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in
crenarchaea, eubacteria, or eukaryotes.

Keywords: 5-cyanomethyl uridine; tRNA modification; anticodon wobble position; codon reading properties; archaea

INTRODUCTION

Of the 16 four-codon boxes in the genetic code, the AUN box
(N=U, C, A, or G) is unique in that three of the four codons
AUU, AUC, and AUA specify one amino acid (isoleucine),
whereas the fourth codon, AUG, specifies another amino
acid (methionine). This three-to-one distribution of codons
within a four-codon box is different from essentially all other
codon boxes in which all four codons either specify the same
amino acid or are split two to two, codons ending in py-
rimidines specifying one amino acid, and codons ending in
purines specifying a different amino acid (Khorana 1968;
Nirenberg 1968).

Archaea and bacteria use two different isoleucine tRNAs
(tRNA1

Ile and tRNA2
Ile) to read the three isoleucine codons.

tRNA1
Ile with the anticodon GAU reads AUU and AUC fol-

lowing the Wobble Hypothesis (Crick 1966), whereas
tRNA2

Ile reads the remaining isoleucine codon AUA without
misreading the methionine codon AUG (Harada and
Nishimura 1974; Köhrer et al. 2008; Ikeuchi et al. 2010;
Mandal et al. 2010). Most interestingly, in both kingdoms,
tRNA2

Ile has almost always C∗AU as the anticodon sequence,
C∗, a modified C in the anticodon wobble position, being
agmatidine in archaea (Ikeuchi et al. 2010; Mandal et al.
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2010) and lysidine in bacteria (Muramatsu et al. 1988;
Grosjean and Björk 2004). Thus, C∗ can form a base pair
with A of the AUA but not with G of the AUG codon. This
raises the question of why archaea and bacteria have evolved
a mechanism to use a modified C instead of a U or a modified
U to base pair exclusively with A.

In an attempt to answer the preceding question, we mutat-
ed the C in the anticodon of the Haloarcula marismortui
tRNA2

Ile gene to U (U34 mutant), expressed the mutant
tRNA in Haloferax volcanii, and purified it. The mutant
tRNAwas found to be a poorer substrate for the haloarchaeal
isoleucyl-tRNA synthetase (IleRS) in vivo and in vitro. The
mutant tRNA was, however, a substrate for Escherichia coli
IleRS, and this allowed us to aminoacylate it with isoleucine
and study its codon reading properties using H. marismortui
ribosomes. In contrast to wild-type Ile-tRNA2

Ile, which binds
only to the AUA codon, the U34mutant tRNA binds not only
to AUA but also to AUU, another isoleucine codon, and
AUG, a methionine codon. To determine whether the U34
mutant derived from H. marismortui tRNA1

Ile species would
have similar coding properties, we also mutated G34 to U34
in the anticodon of tRNA1

Ile. The U34 mutant of tRNA1
Ile

also bound to AUA, AUU, and AUG.
Analyses of the U34 mutant tRNAs showed that U34 in the

anticodon wobble position is modified to 5-cyanomethyl U
(cnm5U), a new modified nucleoside. We, therefore, investi-
gated (1) whether some other naturally occurring tRNAs in
H. volcanii contain this modified nucleoside; and (2) how
widespread the occurrence of this modified nucleoside is in
tRNAs from other archaeal organisms and from other king-
doms. Mass spectrometric analyses of nucleosides present in
total tRNAs indicate that cnm5U is pre-
sent in total tRNA from haloarchaea
and Methanococcus maripaludis but not
in total tRNA from Sulfolobus solfactari-
cus, Saccharomyces cerevisiae, and Escher-
ichia coli, suggesting its possible presence
only in tRNAs from euryarchaea.

RESULTS

Expression of H. marismortui wild-
type and mutant isoleucine tRNAs in
H. volcanii and growth phenotype of
transformants

Previously, we described the purification
of H. marismortui tRNA2

Ile and showed
that it contained agmatidine in the anti-
codon wobble position and bound to the
isoleucine codon AUA but not to the
methionine codon AUG (Mandal et al.
2010). In this work, we mutated the C in
the anticodon wobble position of the
tRNA2

Ile gene to U (Fig. 1A) and ex-

pressed the U34 mutant tRNA in H. volcanii. In a parallel ex-
periment, the G34 in the anticodon wobble position of
tRNA1

Ile was also mutated to U34 (Fig. 1B) and expressed
in H. volcanii.
H. volcanii cells were transformed with pWL201-derived

expression vectors carrying either the H. marismortui wild-
type tRNA2

Ile gene, mutant tRNA2
Ile gene, wild-type

tRNA1
Ile gene, or the mutant tRNA1

Ile gene; the transform-
ants were plated on media containing 4 μg/mL of mevinolin.
Colonies of good size appeared 5–7 d after plating; however,
transformants containing either of the mutant tRNA genes
were always delayed by ∼2 d. Also, although plasmids carry-
ing the empty pWL201 vector or either of the wild-type tRNA
genes yielded ∼107 transformants/μg of plasmid DNA, those
carrying either of the mutant tRNA genes yielded only 105–
106 transformants/μg of plasmid DNA. Additionally, when
individual freshly isolated colonies of similar size were used
to inoculate liquid media containing mevinolin and growth
was monitored over a period of several days, there was a con-
sistent lag of 1–2 d in growth of transformants carrying the
mutant tRNA genes (Fig. 1C,D), although the transformants
eventually grow at a rate similar those carrying the wild-type
tRNA genes. Taken together, these findings suggest that H.
volcanii cells expressing the mutant tRNAs are less fit and re-
quire a phase of adaptation.

Purification of U34 mutants of tRNA2
Ile and tRNA1

Ile

As for the wild-type tRNAs, the mutant tRNAs were puri-
fied by hybrid selection using a biotinylated DNA oligonucle-
otide bound to streptavidin-sepharose, followed by native

FIGURE 1. H. marismortui isoleucine tRNA mutants containing 5-cyanomethyl uridine at the
wobble position. Cloverleaf structures of tRNA2

Ile (A) and tRNA1
Ile (B) from H. marismortui.

The anticodon changes at the wobble position from C+ to U∗ and G to U∗, respectively, are in-
dicated. (C+) agmatidine; (U∗) 5-cyanomethyl uridine (cnm5U). Growth ofH. volcanii cells trans-
formed with plasmids for overexpression of H. marismortui tRNA2

Ile wild-type and the tRNA2
Ile

U34 mutant (C), and H. marismortui tRNA1
Ile wild-type and the tRNA1

Ile U34 mutant (D). The
empty vector (pWL201) is shown as a control in C and D.
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polyacrylamide gel electrophoresis (Suzuki and Suzuki 2007;
Mandal et al. 2010). Figure 2A shows that the purifiedmutant
tRNA2

Ile is essentially homogeneous and consists of a major
band and a minor band (Fig. 2A, left panel, lane 3), both
of which hybridize to a DNA oligonucleotide probe comple-
mentary toH.marismortui tRNA2

Ile (Fig. 2A, right panel, lane
3). The yield of purified tRNA from a 12-L culture of H. vol-
canii was about 4 A260 units and represented ∼0.4% of total
tRNA. The U34 mutant of H. marismortui tRNA1

Ile was pu-
rified similarly and also yielded a homogeneous product
(Supplemental Fig. S1).
Additional evidence for homogeneity of the purified tRNA

was derived from partial RNase T1, RNase A, and RNase U2

digests of 5′-32P-labeled tRNA (Donis-Keller et al. 1977;
Simoncsits et al. 1977; Lockard et al. 1978). All the 32P-la-
beled bands present in the RNase T1 digest were as expected
for the mutant tRNA and were essentially the same as that
for the wild-type tRNA (Fig. 2B, cf. lanes 3 and 6 to lane
9). The only exception was an RNase T1 cut at position 26
of the mutant tRNA, which is absent in RNase T1 digests
of the wild-type tRNA. This is most likely due to a partial
lack of modification of G to N2N2-dimethyl G at position
26 in the mutant tRNA. The cleavage patterns seen in digests
with RNase A and RNase U2 are also essentially identical be-
tween the mutant and the wild-type tRNAs and are, as ex-
pected, based on the tRNA sequence (Fig. 2B, cf. lane 4 to
lane 11, lane 5 to lane 12). Because partial digestions with
RNases A and U2 were carried out in the absence of urea,
digestion with these enzymes is more limited compared to
digestion with RNase T1 in the presence of 7 M urea.
Basically, similar results were obtained for RNase T1 and
RNase A digests of 5′-32P-labeled wild-type and U34 mutant
of tRNA1

Ile (Supplemental Fig. S2).

The U34 mutant tRNA2
Ile and tRNA1

Ile overexpressed
in H. volcanii are poor substrates for aminoacylation
by H. volcanii IleRS

To determine the aminoacylation status of the H. marismor-
tui mutant tRNAs, which are overexpressed in H. volcanii,
we isolated total tRNA from a small scale culture ofH. volcanii
under acidic conditions, separated tRNAs from aminoacyl-
tRNAs on an acid urea polyacrylamide gel, and detected
wild-type and mutant H. marismortui tRNA2

Ile by RNA blot
hybridization (Varshney et al. 1991; Köhrer and RajBhandary
2008). Both the mutant and the wild-type tRNA2

Ile were ami-
noacylated rather poorly (20%–25% and 25%–30%, respec-
tively), based on phosphorimager analysis of the bands, in
H. volcanii (Fig. 3A, top panel). For the U34 mutant derived
from tRNA1

Ile, the corresponding numbers were ∼60% for
the mutant and >90% for the wild-type tRNA (Fig. 3B, top
panel). Control experiments using H. volcanii tRNA2

Ile and
tRNA1

Ile probes on the same blots show that the endogenous
wild-typeH. volcanii tRNA2

Ile and tRNA1
Ile are aminoacylated

essentially quantitatively (Fig. 3A,B, bottom panels).
In vitro aminoacylation of the purified H. marismortui

mutant tRNA2
Ile and tRNA1

Ile using IleRS present in S10,
S30, or S100 extracts of H. volcanii showed that the mutant
tRNAs were poor substrates for the archaeal IleRS (data not
shown). The mutant tRNAs could, however, be aminoacy-
lated essentially quantitatively with 3H-Ile using an excess
of purified E. coli IleRS (Supplemental Fig. S3).

Codon-reading properties of the U34 mutant
tRNA2

Ile and tRNA1
Ile

Purified wild-type and mutant tRNA2
Ile and mutant tRNA1

Ile

were aminoacylated with 3H-Ile using E. coli IleRS, and the

FIGURE 2. Purification and characterization of the H. marismortui
tRNA2

Ile U34 mutant. (A) Overexpression and purification of the H.
marismortui tRNA2

Ile U34 mutant. Native PAGE analysis of total tRNA
from H. volcanii (lane 1), total tRNA from H. volcanii overexpressing
the H. marismortui tRNA2

Ile U34 mutant (lane 2), and purified H. mar-
ismortui tRNA2

Ile U34 mutant (lane 3). Purified H. marismortui wild-
type tRNA2

Ile is shown as a control (lane 4). One-tenth A260 unit of total
tRNA and 0.01 A260 of purified tRNA were applied per lane. tRNAs are
visualized by ethidium bromide staining (left panel) or Northern blot
analysis using a probe specific for H. marismortui tRNA2

Ile (right panel).
(B) Characterization of purified H. marismortui wild-type and U34 mu-
tant tRNA2

Ile. The homogeneity of purified tRNAs was confirmed by
partial RNase T1 (T1 lanes), RNase A (A lanes), RNase U2 (U2 lanes)
digests of 5′-32P-labeled tRNA. Two different concentrations of RNase
T1 were used in lanes 3 and 6. (Lane OH) partial alkali hydrolysis;
(Lane C) undigested tRNA control. 32P-labeled fragments were separat-
ed by denaturing PAGE and visualized by autoradiography.

5-Cyanomethyl uridine, a new tRNA modification
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3H-Ile-tRNAs were used for studying oligonucleotide-de-
pendent binding to H. marismortui ribosomes. The oligonu-
cleotides used were AUGAUA, AUGAUC, AUGAUU, and
AUGAUG. Figure 4 shows the results. As previously pub-
lished (Mandal et al. 2010), the wild-type Ile-tRNA2

Ile binds
to AUA but not to AUU, AUC, or AUG (Fig. 4A). In contrast,
the mutant tRNA2

Ile binds best to AUA, but it also binds to
AUU, another isoleucine codon, and to AUG, a methionine
codon (AUA>AUG>AUU) (Fig. 4B). The codon-dependent
binding of the tRNA to the ribosome is dependent in all cases
on concentration of the oligonucleotide. The codon binding
properties of mutant tRNA1

Ile are the same as those of the
mutant tRNA2

Ile (AUA>AUG>AUU) (Fig. 4C).

Analysis of nucleotide in the anticodon wobble
position of the mutant tRNA

In view of the codon binding properties of the U34 mutant
tRNAs, a key question of interest is whetherU34 in themutant
tRNA is modified inH. volcanii; if so, what is the nature of the
modification? For this, we partially digested the mutant
tRNA2

Ile randomly with alkali, labeled the 5′-hydroxyl groups
of the fragments generated with 32P using T4 polynucleotide
kinase, and separated the 5′-32P-labeled fragments on a dena-
turing polyacrylamide gel (Stanley and Vassilenko 1978;
Gupta and Randerath 1979; Kuchino et al. 1979; RajBhandary
1980). Figure 5A shows part of the pattern obtained for the

wild-type and the mutant tRNAs. The
digest of wild-type tRNA shows a pro-
nounced shift in the electrophoretic mo-
bility of fragments, which are produced
by cleavage of phosphodiester bonds
between nucleotides 33/34 and 34/35,
and which differ by one nucleotide. This
is due to the presence of the positively
charged agmatidine at position 34 (Man-
dal et al. 2010). As expected, such a shift
in mobility between neighboring frag-
ments is not observed in digests of the
U34 mutant tRNA.
For identification of the 5′-terminal

nucleotides of the fragments, the 32P-la-
beled bands corresponding to nucleo-
tides 32–38 in the anticodon loop of the
wild-type and mutant tRNA were eluted
from the gel, cleaved with nuclease P1,
and the 32P-labeled 5′-terminal nucleo-
tide of each fragment was identified by
thin layer chromatography (Nishimura
1979; Silberklang et al. 1979). Figure 5B
shows the two-dimensional thin layer
chromatography pattern obtained for
U34 in the mutant tRNA. The 5′-32P-la-
beled nucleotide migrates very close to,
but not identical with, pU. Thus, U34

in the mutant tRNA contains a base modification. A similar
analysis of the U34 mutant derived from H. marismortui
tRNA1

Ile shows that U34 in this mutant tRNA also carries
the same base modification (Fig. 5C).

Mass spectrometric identification of the modified
U as 5-cyanomethyl U (cnm5U)

To identify nucleosides that differed between wild-type and
the U34 mutant H. marismortui tRNA2

Ile, purified tRNA2
Ile

was enzymatically hydrolyzed, and the nucleosides were
resolved by reversed-phaseHPLC. Comparison ofHPLCpro-
files showed the presence of a nucleoside present exclusive-
ly in the mutant tRNA2

Ile (retention time 7.9 min) (Fig. 6,
vertical arrow). Subsequent analysis of both samples by
liquid chromatography-coupled quadrupole time-of-flight
mass spectrometry (LC-QTOF) revealed a species with m/z
284.0872 (Fig. 7A), again only in the mutant tRNA. In the
same high-resolution spectrum, we also identified an ion
withm/z 152.0451, which is consistent with the loss of ribose
from a precursor species withm/z 284.0872 (Fig. 7A). Similar
analysis of a chemically synthesized 5-cyanomethyl-2′-deoxy-
uridine standard (Fig. 8B; Sakata et al. 1980; Kuwahara et al.
2006) revealed an ion with an identical m/z of 152.0451
(Fig. 7C).
The mass spectral data for the modified ribonucleoside

identified in this study suggested a chemical formula of

FIGURE 3. State of in vivo aminoacylation ofH.marismortuiwild-type and U34mutant tRNA2
Ile

(A) and wild-type and U34 mutant H. marismortui tRNA1
Ile (B). Total tRNA was isolated under

acidic conditions and analyzed by acid urea PAGE followed by Northern hybridization using
probes specific for H. marismortui tRNA2

Ile (A, top panel) and H. marismortui tRNA1
Ile (B, top

panel), respectively. The same blots were stripped and rehybridized using probes specific for
the endogenousH. volcanii tRNA2

Ile (A, bottom panel) andH. volcanii tRNA1
Ile (B, bottom panel).

Note that the H. volcanii tRNA1
Ile-specific probe also picks up the overexpressed H. marismortui

tRNA1
Ile because of the high levels of overexpression ofH. marismortui tRNAs and close sequence

similarity between the overexpressed and the endogenous tRNA1
Ile. (ac) tRNA isolated under

acidic conditions; (OH−) tRNA after deacylation by base-treatment.

Mandal et al.
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C11H13N3O6 (calculated m/z 284.0877), consistent with a U
modified with methylene and cyano functional groups.
Comparison of the UV absorption spectra of the modified
U (isolated by HPLC), thymidine, and the synthetic 5-cyano-
methyl-2′-deoxyuridine showed that they all had a λmax at
267 nm (Supplemental Fig. S4), suggesting that the cyano
group is not attached directly to the ring, and the modified
U most likely has a –CH2–C≡N side chain. Since most
tRNA anticodon wobble modifications on U occur at the
5-position of the base (Yokoyama and Nishimura 1995),
one candidate structure for the modified U is 5-cyanomethyl
uridine (cnm5U) (Fig. 8A).
This structure was confirmed by tandemmass spectromet-

ric analysis of the modified U in comparison with the syn-
thetic 5-cyanomethyl-2′-deoxyuridine. As shown in Figure

7B and D, both the modified U and 5-cyanomethyl-2′-de-
oxyuridine were subjected to pseudo-MS3 fragmentation
analysis by LC-QTOF. In this analysis, the nucleoside is
deglycosylated in-source, and the resulting protonated base
was selected by Q1 for further fragmentation by collision in-
duced dissociation (CID) in the collision cell. In the high-res-
olution tandem mass spectra thus obtained, nucleobases
from both the modified U (Fig. 7B) and the synthetic 5-cya-
nomethyl-2′-deoxyuridine (Fig. 7D) generated identical frag-
mentation patterns withm/z values of 125, 82, and 54, which
are consistent with the proposed fragmentation pathway
shown in Figure 7E. If the cyanomethyl group was present
at position 5 of U, and not position 6, then CID fragmenta-
tion should also produce the allene species 5 (m/z 39) shown
in Figure 7E. Although this species was not apparent by
QTOF analysis due to low sensitivity, analysis of the proton-
ated base ion by in-source fragmentation of the modified
U and the 5-cyanomethyl-2′-deoxyuridine standard by tan-
dem triple-quadruple (QqQ) mass spectrometry revealed a
species with m/z 39 for both nucleosides (Fig. 7B,D, insets).
Altogether, our data identify cnm5U as the unique mod-
ified U in the mutant H. marismortui tRNA2

Ile. A similar
mass spectrometric analysis of purified mutant H. marismor-
tui tRNA1

Ile also confirmed the presence of cnm5U in this
tRNA (data not shown).

cnm5U is present in total tRNAs from haloarchaea
and M. maripaludis but not in tRNAs from
S. solfataricus, S. cerevisiae, and E. coli

The identification of cnm5U as a new modified nucleoside in
mutantH. marismortui tRNA2

Ile and tRNA1
Ile expressed inH.

volcanii raised the question of whether it is present in total
tRNA fromH. volcanii and from other organisms. To identify
cnm5U in endogenous tRNAs inH. volcanii, we analyzed total
tRNA digests with or without expression of theH. marismor-
tui U34 mutant tRNA2

Ile by QTOF. To reduce background
and improve detection, ribonucleosides in total tRNA digests
were separated by HPLC, and fractions eluting in the region
of cnm5U were collected and subjected to LC-QTOF. We
found cnm5U in total tRNA with or without expression of
the U34mutantH.marismortui tRNA2

Ile, suggesting the pres-
ence of cnm5U in endogenous tRNAs inH. volcanii (data not
shown). We also developed a multiple reaction-monitoring
(MRM) method based on the fragmentation information
from the LC-QTOF analysis of 5-cyanomethyl-2′-deoxyuri-
dine and cnm5U, using a tandem triple-quadrupole mass
spectrometer (Fig. 9A); and using this approach, we observe
a distinct peak corresponding to cnm5U in total tRNA isolat-
ed from wild-type H. volcanii cells (Fig. 9B).
We subsequently analyzed total tRNA fromHalobacterium

salinarum, H. marismortui, M. maripaludis, S. solfataricus, S.
cerevisiae, and E. coli for the presence of cnm5U. In the case of
H. salinarum,H. marismortui,M.maripaludis, and S. solfatar-
icus, total tRNA digests were directly analyzed using the

FIGURE 4. Ribosome binding of U34 mutants of H. marismortui
tRNA2

Ile and tRNA1
Ile. Template-dependent binding of purified 3H-

Ile-tRNA2
Ile wild-type (A) and 3H-Ile-tRNA2

Ile U34 (B) to ribosomes
isolated from H. marismortui. Oligonucleotides used were AUGAUA,
AUGAUC, AUGAUG, and AUGAUU. (C) Binding of purified 3H-Ile-
tRNA2

Ile U34 and 3H-Ile-tRNA1
Ile U34 to ribosomes isolated from H.

volcanii; the mRNA concentration was 1 mM; the AUGUUU and “no
mRNA” controls are also shown in C. Results from three independent
experiments are shown.

5-Cyanomethyl uridine, a new tRNA modification

www.rnajournal.org 181



MRM method (Fig. 9C–F); in the case of S. cerevisiae and E.
coli, HPLC fractions eluting at the cnm5U retention timewere
collected and the prepurified fractions were subjected to LC-
QTOF analysis (Fig. 9G,H). In all cases, purified cnm5U from
the U34 mutant tRNA2

Ile and total tRNAs from H. volcanii
were used as positive control. Within the detection limits of
the instrument, we found cnm5U in total tRNA from halo-
archaea and M. maripaludis but not from S. solfactaricus, S.
cerevisiae, and E. coli.

DISCUSSION

To answer the question why most bacterial and archaeal iso-
leucine tRNAs use lysidine or agmatidine in the anticodon
wobble position to base pair exclusively with A but not with
G, we have reported here the expression, purification, and
analysis of the codon binding properties of mutants of H.
marismortui tRNA2

Ile and tRNA1
Ile, in which the anticodon

wobble position has been mutated to U. The U34 mutants
of H. marismortui tRNA2

Ile and tRNA1
Ile bind not only to

the isoleucine codons AUA and AUU but also to the methio-
nine codonAUG. Binding toAUGcould lead tomisreading of
AUG and insertion of isoleucine in place of methionine into
proteins. The extent of misreading of the AUG codon in H.
volcaniiwould, however, depend upon several factors, includ-
ing the extent of aminoacylation of the mutant tRNA, its con-
centration in vivo, its relative affinity for the AUG codon on
the ribosome, and competition by the endogenousH. volcanii
elongator Met-tRNAMet, which normally binds to the AUG
codon. The findings that transformants carrying the genes
for the U34 mutants of tRNA2

Ile or tRNA1
Ile have a growth

disadvantage compared with those carrying the wild-type
tRNA2

Ile or tRNA1
Ile (Fig. 1C,D) suggest that misreading of

AUG also occurs in vivo. This would ex-
plain why nearly all archaea and bacteria
use a modified C and not U or a modified
U in the anticodon wobble position to
read the isoleucine codonAUA.Although
agmatidine and lysidine, both modified
derivatives of C, base pair specifically
with A of AUA, similar derivatives of U
have so far not been found in nature. It
is likely that such U derivatives would
have tautomeric structures in which
both the N3 and O4 could act as H-bond
acceptors and, therefore, be incapable of
forming stable base pairs with A on the
ribosome.
Our results do not, however, rule out

the possibility that some archaeal or bac-
terial organism will use U or a different
modified U in the anticodon wobble po-
sition to read the isoleucine codon AUA
without also reading the methionine co-
don AUG. For example, most eukaryotic

organisms encode an isoleucine tRNA (tRNA2
Ile) that has a U

modified toΨ in the anticodon wobble position (Senger et al.
1997). The Ψ in this tRNA is thought to base pair with A of
the AUA codon but not with G of the AUG codon. Also, it is
known that two archaeal organisms, a nanoarchaeon and a
korachaeon (Waters et al. 2003; Randau et al. 2005; Elkins
et al. 2008), and some bacteria includingMycoplasma mobile,
Bifidobacterium adolescentis, and a mutant strain of B. subtilis
encode tRNAIle with a UAU in the anticodon (Fabret et al.
2011). It has been shown that the U in the anticodon wobble
position of tRNAIle from M. mobile and the mutant tRNAIle

from B. subtilis is not modified, and these tRNAs read the
isoleucine codon AUA without misreading the methionine

FIGURE 5. 5′-32P-labeling of random alkali fragments (A), and 2D-TLC analysis of the wobble
base nucleotide in U34 mutants ofH. marismortui tRNA2

Ile (B) and tRNA1
Ile (C). Purified tRNAs

were cleaved randomly with alkali; fragments were 5′-end labeled with 32P and separated by gel
electrophoresis. The 5′-end nucleotide of the fragment corresponding to U∗34 was analyzed by
nuclease P1 digestion and 2D-TLC. Nonradioactive markers pA, pC, pG, and pU were visualized
by UV-shadowing and are indicated by circles. (pU∗) position of cnm5U.
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FIGURE 6. Identification of a unique ribonucleoside species in the U34
mutant tRNA2

Ile. PurifiedH. marismortuiwild-type and the U34mutant
thereof were digested to ribonucleosides and resolved by HPLC. The UV
(260 nm) absorption patterns of the two digests were overlaid, and a
unique peak was identified in the mutant sample, highlighted by the
arrow.
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codon AUG to any significant extent in
vivo and in vitro (Köhrer et al. 2013;
Taniguchi et al. 2013). It is possible that
in these few organisms, the ribosomes
and the tRNAIle sequences have co-
evolved in such a way that U or a modi-
fied U base pairs much better with A
than with G.
Characterization of the U34 mutants

of H. marismortui tRNA2
Ile and tRNA1

Ile

led to the discovery of cnm5U, a new
modified nucleoside in H. volcanii.
Mass spectrometric analysis of nucleo-
sides derived from total tRNAs isolated
from H. volcanii, H. salinarum, H. maris-
mortui, and M. maripaludis has shown
that this modified nucleoside is also
present in endogenous tRNAs from these
organisms but not in total tRNAs iso-
lated from S. solfactaricus (a crenarch-
aeon), S. cerevisiae, or E. coli. Thus,
cnm5U may be present mostly in tRNAs
from euryarchaea.
Ribosome binding experiments with

the U34 mutant of H. marismortui
tRNA2

Ile show that it binds to AUA,
AUU, and AUG (AUA>AUG>AUU)
with minimal binding, if any, to AUC
(Fig. 4B,C). The corresponding mutant
of tRNA1

Ile also binds to AUA, AUU, and
AUG but not to AUC (Fig. 4C). These
results suggest that cnm5U in the antico-
don wobble position of a tRNA forms
base pairs with U, A, or G on the mRNA.
The codons of a four-codon box in the

genetic code Table are, in general, read by
at least two tRNAs. For example, in eu-
karyotes a tRNA with inosine in the anti-
codon wobble position reads codons
ending in U, C, and A, whereas another
tRNA with C in the anticodon wobble
position reads codons ending in G
(Björk 1998). In contrast, in bacteria
such as E. coli, a tRNA with 5′-carboxy-
methoxy U (cmo5U) in the anticodon
wobble position reads codons ending in
U, A, and G, whereas another tRNA
with G in the anticodon wobble position
reads codons ending in U and C (Murao
et al. 1970; Yokoyama and Nishimura
1995). Similarly, in B. subtilis, a tRNA
with 5′-methoxy U (mo5U) reads codons
ending in U, A, and G, and a tRNA with
G in the anticodon reads codons ending
in U and C (Murao et al. 1976; Yokoyama
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and Nishimura 1995). Information on the codon recognition
patterns and properties of archaeal tRNAs is, however, quite
limited. Except for the classical work of Gupta on nucleotide
sequences of H. volcanii tRNAs and identification of many of
the modified bases in these tRNAs (Gupta 1984, 1986) and
identification of genes encoding many of the tRNA modify-
ing enzymes using bioinformatic analyses (Phillips and de
Crecy-Lagard 2011), there has been very little work done
with purified tRNAs from archaea and on the codon recogni-
tion properties of archaeal tRNAs. The results we have ob-
tained with two mutant haloarchaeal tRNAs containing
cnm5U in the anticodon wobble position suggest that the co-
don recognition properties of cnm5U, which base pairs with
U, A, or G, parallel those of cmo5U in E. coli and mo5U in B.
subtilis. With the knowledge that other tRNAs in H. volcanii
contain cnm5U (this work), it becomes important now to pu-
rify and identify these tRNAs and establish their codon recog-
nition properties using H. volcanii ribosomes.

Finally, in spite of the fact thatH. volcanii tRNAs have been
among the best studied among the archaea in terms of nucle-
otide sequences and base modifications, our recent work on
two haloarchaeal tRNAs, tRNA2

Ile and a mutant derived from
it, led to the discovery of two new modified nucleosides,
agmatidine and 5-cyanomethyl uridine in H. volcanii and
other haloarchaea. With so many other archaeal organisms,
whose tRNAs have not been purified or studied to any extent,
most likely there are many modified nucleosides with in-
teresting structures and functions that remain to be discov-
ered (Phillips and de Crecy-Lagard 2011). The methods for
tRNA purification and analysis used here combined with
the increased power and sophistication of mass spectral tech-
niques and instrumentation should significantly facilitate
this discovery.

MATERIALS AND METHODS

General

Strain H. volcaniiWFD11 and plasmids pUCsptProM and pWL201
(Lam andDoolittle 1989; Nieuwlandt andDaniels 1990) were kindly
provided by Drs. John R. Palmer and Charles J. Daniels (Depart-
ment of Microbiology, Ohio State University). H. marismortui
ATCC 43,049 was kindly provided by Dr. Peter Moore (Department
of Chemistry, Yale University). The E. coli strains used in this work,

E. coli XL1-blue and E. coli GM2163, have been described before
(Ramesh and RajBhandary 2001). Generalmanipulations ofH.mar-
ismortui, H. volcanii, and E. coli were performed according to stan-
dard procedures (DasSarma and Fleischmann 1995; Sambrook and
Russell 2001). RNase T1, RNase A, RNase U2, nuclease P1, and
snake venom phosphodiesterase I were from Sigma; T4 polynucleo-
tide kinase (T4-PNK), antarctic phosphatase, calf intestinal phos-
phatase, and inorganic pyrophosphatase were from New England
Biolabs; DNA and RNA oligonucleotides were from IDT; and oligo-
nucleotides used for cloning, detection, and purification of tRNAs
are listed in Supplemental Table S1.

Cloning and overexpression of H. marismortui tRNA2
Ile

and tRNA1
Ile (WT and the U34 mutant)

The gene forH. marismortui tRNA2
Ile was first cloned into the vector

pUCsptProM (Ramesh and RajBhandary 2001). For this, the gene
forH.marismortui tRNA2

Ile was PCR amplified fromH.marismortui
genomic DNA and inserted into the XbaI and BamHI sites of plas-
mid pUCsptProM downstream from the tRNALys promoter to gen-
erate pUCHmaIle2WT. The C34 to U34 mutation in the anticodon
of tRNA2

Ile was generated by QuikChange mutagenesis (Stratagene)
using pUCHmaIle2WT as template. A HindIII/EcoRI fragment
containing the wild-type tRNA2

Ile gene or its U34 mutant, including
the tRNALys promoter, was subcloned into the shuttle plasmid
pWL201 to generate pWLHmaIle2WT and pWLHmaIle2MUT.
Similarly, pWLHmaIle1WT and pWLHmaIle1MUT carrying the

H. marismortui wild-type tRNA1
Ile gene or its

U34mutant were generated. All initial cloning
was done inE. coliXL-1 blue. After confirming
the sequences of the desired wild-type and
mutant tRNA genes, the respective plasmids
were used to transform E. coli GM2163
(dam−).PlasmidDNAisolated fromthis strain
was then used to transform H. volcanii as de-
scribed (DasSarma and Fleischmann 1995;
Ramesh and RajBhandary 2001). Transform-
ants were grown in H. volcanii medium con-
taining 4 µg/mL mevinolin (US Biologicals).

FIGURE 7. Structural elucidation of 5-cyanomethyl uridine. (A,C) High mass-accuracy mass
spectra of the unknown ribonucleoside species (A) found in the purified H. marismortui
tRNA2

Ile U34 mutant and the 5-cyanomethyl-2′-deoxyuridine synthetic standard (C). The parent
ions have m/z values of 284.0872 (A) and 268.0928 (C), and the deglycosylated base ions have
identicalm/z values of 152.0451 (A,C). (B,D) Pseudo-MS3 mass spectra of the unknown ribonu-
cleoside species (B) and the 5-cyanomethyl-2′-deoxyuridine synthetic standard (D). Following
in-source fragmentation of the parent ribonucleoside, the deglycosylated base ion was subjected
to CID, with the product ions (numbered 1–5) in close agreement with the theoretical fragmen-
tation pathway shown in panel E. The MRM chromatogram of them/z 82→39 transition (species
5) is shown in the insets of B and D. (E) Proposed fragmentation pathway for 5-cyanomethyl ura-
cil, with each numbered fragment along with its formula and exact mass.

A

B

FIGURE 8. Chemical structures of 5-cyanomethyl uridine (A) and 5-
cyanomethyl-2′-deoxyuridine (B).
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Polyacrylamide gel electrophoresis (PAGE) and
Northern blot analysis of tRNA

Total RNA was extracted under acidic conditions using Trizol
(Invitrogen) as described before (Köhrer et al. 2008). RNA was re-
suspended in 10 mM sodium acetate pH 5.0 and stored at −80°C.
tRNAs were analyzed by acid urea PAGE (Varshney et al. 1991;
Köhrer and RajBhandary 2008) or native PAGE as indicated, fol-
lowed by Northern blotting (Köhrer and RajBhandary 2008).
tRNAs were visualized by hybridization using 32P-labeled DNA
oligonucleotides according to standard procedures (Sambrook
and Russell 2001). Oligonucleotides were 5′-end labeled with
γ-[32P]-ATP (3000 Ci/mmol; PerkinElmer) using T4-PNK. North-

ern blots were analyzed by autoradiography
followed by PhosphorImaging using Image-
quant software.

Purification of overexpressed H.
marismortui tRNA2

Ile and tRNA1
Ile

(WT and U34 mutant) from H.
volcanii

H. volcanii transformants were grown at 37°C
to an OD600 of 3–3.5, and crude RNA was
isolated by acid guanidinium thiocyanate–
phenol–chloroform extraction (Chomczynski
and Sacchi 2006). Ribosomal RNA was re-
moved by precipitation with 1M LiCl yielding
total tRNA. Purification of overexpressed iso-
leucine tRNAs was done as described earlier
for tRNA2

Ile (Suzuki and Suzuki 2007; Mandal
et al. 2010), involving hybrid selection of the
desired tRNA using a biotinylated DNA oligo-
nucleotides immobilized to a streptavidin res-
in. The biotinylated oligonucleotide for
tRNA2

Ile purification was complementary to
nucleotides 54–73 of the tRNA; the biotiny-
lated oligonucleotide for tRNA1

Ile purification
was complementary to nucleotides 39–58 of
the tRNA. Affinity purification was followed
by electrophoresis of the enriched tRNA on
native 10%–12.5% polyacrylamide gels. After
elution from the gel and extensive dialysis
against 5 mM ammonium acetate pH 5.5,
the tRNA was concentrated by evaporation,
precipitated with ethanol, and the precipitate
was washed several times with 70% ethanol.
Typically, about 4.0 A260 units of the U34mu-
tant of tRNA2

Ile were obtained from approxi-
mately 1000 A260 of total tRNA; about 5.5
A260 units of the U34 mutant of tRNA1

Ile

were obtained from about 400 A260 of total
tRNA. The purity of the tRNAs was assessed
by PAGE, in vitro aminoacylation with isoleu-
cine, and partial digestion of 5′-32P-labeled
tRNAs with RNases T1, A, and U2.

In vitro aminoacylation of tRNA

One hundredth to 1.0 A260 units of tRNA were aminoacylated in vi-
tro with L-isoleucine as described below using purified E. coli IleRS
or S10, S30, or S100 extracts prepared from H. volcanii. Reaction
mixtures using purified E. coli IleRS contained 50 mM 4-(2-hydrox-
yethyl)piperazine-1-ethanesulfonic acid (Hepes) pH 7.5, 10 mM
MgCl2, 5 mM ATP, 0.1 μg/μL BSA, 5 μM [3H]-isoleucine
(American Radiolabeled Chemicals), and 0.05 μM of IleRS.
Alternatively, in vitro aminoacylations were carried using S10,
S30, or S100 extracts from H. volcanii in a reaction containing 10
mM Hepes pH 7.5, 2.5 M KCl, 50 mM Mg(OAc)2, 5 mM ATP, 5
μM [3H]-isoleucine, and ∼0.5 μg/μL extract. At various time points,
aliquots were removed and analyzed by precipitation with TCA fol-
lowed by liquid scintillation counting of TCA-precipitable counts.
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FIGURE 9. cnm5U in total tRNAs from haloarchaea,M. maripaludis, S. solfataricus, S. cerevisiae,
and E. coli. Nucleoside detection was performed, either by monitoringm/z 284.2→125 transition
on an Agilent 6510 triple-quadrupole mass spectrometer (A–F) or by extracted ion chromato-
gram for the nucleoside m/z 284.2 on an Agilent 6520 QTOF mass spectrometer (G,H).
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Background (obtained from reactions run without tRNA) was sub-
tracted from all values unless otherwise noted. Quantitative amino-
acylation of purified H. marismortui isoleucine tRNAs for ribosome
binding assays were carried out with purified E. coli IleRS; for this,
reactions were allowed to proceed for 2 h, and inorganic pyrophos-
phatase was added at a final concentration of 0.04 units/μL. After
aminoacylation, tRNAs were extracted with acid phenol and precip-
itated with ethanol.

Isolation of H. marismortui and H. volcanii
ribosomes

Ribosomes fromH. marismortui andH. volcanii were isolated as de-
scribed (Mandal et al. 2010) using the basic procedure of Wittman
and coworkers (Shevack et al. 1985) with minor modifications. Cells
from a 2 L culture grown to midlog phase (OD600 ∼3.5) were sus-
pended in ice-cold 10 mM Hepes pH 7.5, 100 mM Mg(OAc)2, 3.4
MKCl and 6mM 2-mercaptoethanol (“high-salt ribosome buffer”),
and lysed by French Press (Constant Cell Disruption System; 10,000
Psi, 2 passages). The ribosomes were then prepared as described, re-
suspended in “high-salt ribosome buffer,” divided into aliquots,
quick frozen, and stored at −80°C.

Binding of aminoacylated tRNAs to ribosomes

The mRNA oligonucleotides (AUGAUA, AUGAUC, AUGAUU,
AUGAUG, and AUGUUU) used in the ribosome binding experi-
ments were stored at a stock concentration of 10 mM. The standard
reaction (10 μL) contained 50mMTris-HCl pH 7.5, 50 mMNH4Cl,
5 mM Mg(OAc)2, 3 mM 2-mercaptoethanol, 2.1 M KCl, 1.2 A260

units of H. marismortui ribosomes, RNA oligonucleotides (0–1.5
mM), and ∼1.6 pmol [3H]-labeled tRNA (10,000 cpm).
Alternatively, reactions (20 μL) contained 50 mM Hepes pH 7.5,
50 mM NH4Cl, 50 mM Mg(OAc)2, 3 mM 2-mercaptoethanol, 2.1
M KCl, 1 A260 unit of H. volcanii ribosomes, RNA oligonucleotides
(0–1.5 mM), and ∼1.6 pmol [3H]-labeled tRNA (10,000 cpm).
Incubation was at room temperature for 1 h. The reaction was
stopped by adding 0.5 mL wash buffer [50 mM Tris-HCl or
Hepes pH 7.5, 50 mM NH4Cl, 5 mM Mg(OAc)2, 2.1 M KCl], and
the mixture was filtered through a nitrocellulose filter (HA 0.45
μm, Millipore) prewashed with the same buffer. The filters were
washed several times with wash buffer, dried, and counted for radio-
activity in a liquid scintillation counter.

5′-32P-end labeling and partial digestion of tRNA

tRNA (0.01 A260) was dephosphorylated with 1 unit of calf intestinal
phosphatase in a 50-μL reaction containing 50 mMTris-HCl pH 7.9
and 1mMEDTA. Before adding enzyme, the mixture was incubated
for 2 min at 65°C and then for 5 min at 37°C. After dephosphory-
lation for 30 min at 37°C, the reaction mixture was incubated
with 5 mM nitrilotriacetic acid (Sigma) for 30 min at room temper-
ature, and the phosphatase was inactivated by heat for 2 min at 65°C.
Dephosphorylated tRNAs were labeled with 32P at the 5′ terminus in
a 50-μL reaction containing 70 mM Tris-HCl pH 7.5, 10 mM
MgCl2, 5 mM dithiothreitol (DTT), 10 pmol of γ-[32P]-ATP, and
20 U of T4-PNK. After 30min of incubation at 37°C, the 32P-labeled
tRNA was precipitated with a 2.5 volume of ethanol, 0.2 M ammo-
nium acetate pH 5.2, and 10 µg glycogen (Ambion). The precipitate

was washed with 70% ethanol. 32P-labeled tRNA was separated by
electrophoresis on a 6% denaturing polyacrylamide gel, and the
band corresponding to the full-length tRNA was excised and eluted
in 10 mM Tris-HCl pH 7.5 and 5 mM MgCl2. The eluted radiola-
beled tRNA was further precipitated and washed as above and
then dissolved in sterile water.

For partial alkali hydrolysis and partial RNase digestions, 20,000
cpm of 32P-labeled tRNA and 0.01 A260 units of totalH. marismortui
tRNA were used in reaction volumes of 7.5–10 μL. The partial alkali
hydrolysis reaction was in 33 mM Na2CO3/NaHCO3 buffer pH 9.2
for 2–3 min at 95°C. The partial RNase T1 digestion was in 50 mM
Tris-HCl pH 7.5, 7 M urea and 5–10 U of RNase T1 and incubation
was for 10 min at 50°C. Partial digestion with RNase U2 (0.002 unit)
was in 50 mM ammonium acetate pH 4.5 for 5 min at 37°C. Partial
digestion with RNase A (0.002–0.005 unit) was in 10 mM Tris-HCl
(pH 8.0), 1 mM EDTA for 5 min at 37°C. After the incubation, sam-
ples were quick frozen, lyophilized to dryness, and then dissolved in
formamide loading buffer. The samples were separated by electro-
phoresis on a 10% denaturing polyacrylamide gel; gels were dried
and then used for autoradiography.

Nuclease P1 digests of 5′-32P-end labeled fragments
of tRNA

Purified tRNAs (0.01 A260) were partially hydrolyzed with alkali as
described above. The mixture was evaporated to dryness, and the
residue was dissolved in 10 μL water. Digested tRNA (0.001 A260)
was incubated with 5 units of T4-PNK in a 20-μL reaction contain-
ing 70 mM Tris-HCl pH 7.5, 10 mM MgCl2, 5 mM DTT, and 2.5
pmol γ-[32P]-ATP for 5 min at 37°C. The 5′- 32P -labeled fragments
were separated by 10% denaturing PAGE, and bands corresponding
to the anticodon base U34 (for mutant tRNA2

Ile and tRNA1
Ile) and

bases preceding and following U34 were eluted with buffer A (20
mM Tris-HCl pH 7.5, 10 mM MgCl2), precipitated with ethanol,
washed, dissolved in sterile water, and digested with nuclease P1
in 50 mM ammonium acetate buffer pH 5.0 overnight at 37°C.
The incubation mixtures were quick frozen on dry ice and lyophi-
lized under vacuum. Nucleotides were dissolved in sterile water
and lyophilized to dryness three times to remove any ammonium
acetate prior to thin layer chromatography.

Thin layer chromatography

Cellulose F plates (20 × 20 cm) with fluorescent background used
for two-dimensional thin layer chromatography (2D-TLC) analyses
were obtained fromMerck. The solvent system for the first and sec-
ond dimension were as follows: (1) isobutyric acid:concentrated
ammonia:water (66:1:33); and (2) isopropanol:concentrated HCl:
water (70:15:15). The first dimension was run in Solvent 1 for
∼16 h; the plates were then dried overnight. The second dimension
was run in Solvent 2 for ∼28 h. Plates were dried and analyzed by
autoradiography. Nonradioactive nucleotides were used as markers
and visualized by UV shadowing.

Enzymatic hydrolysis of tRNA and HPLC analysis
of modified ribonucleosides

Purified H. marismortui tRNA2
Ile and tRNA1

Ile (WT and U34 mu-
tants) and total tRNA from H. volcanii, H. salinarum, H.
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marismortui, M. maripaludis, S. solfataricus, S. cerevisiae, and E. coli
were digested to nucleosides using nuclease P1, snake venom phos-
phodiesterase I, and antarctic phosphatase as described in detail by
Crain (Crain 1990). After digestion, nucleosides were passed
through a centrifugal filter (Amicon Ultra; 10K) for removal of
enzymes.
Nucleosides were then separated by HPLC using an Agilent 1100

HPLC and a Thermo Scientific Hypersil GOLD aQ reverse-phase
column (150 × 2.1 mm, 3 µm) eluted with the following gradient
of water to acetonitrile containing 8 mM ammonium acetate at a
flow rate of 0.3 mL/min and 36°C: 0–18 min, 0%; 18–23 min,
0%–1%; 23–28 min, 1%–6%; 28–30 min, 6%; 30–40 min, 6%–

100%; 40–50 min, 100%; the HPLC eluent was monitored at 260
nm using a diode-array detector.

Liquid chromatography-coupled mass spectrometric
analysis of ribonucleosides

Ribonucleosides identified by HPLC were structurally characterized
by LC-MS analysis. Initial analysis of the unknown ribonucleoside
was performed using an Agilent 1290 UPLC equipped with diode ar-
ray detectors and a Thermo Scientific Hypersil GOLD aQ C18 re-
verse-phase column (100 × 1 mm, 1.9 µm particle size) that was
coupled to an Agilent 6510 QTOF high resolution mass spectrom-
eter with an electrospray ionization source operated in positive
ion mode with the following parameters: drying gas temperature,
325°C; drying gas flow, 8 L/min; nebulizer, 25 psi; and capillary volt-
age, 3500 V. The QTOF was operated in MS mode, with 140 V frag-
mentor voltage and with mass range m/z 100–1000. HPLC
resolution was performed with the same gradient as before of water
to acetonitrile at a flow rate of 70 µL/min and 36°C: 0–18 min, 0%;
18–23 min, 0%–1%; 23–28 min, 1%–6%; 28–30 min, 6%; 30–40
min, 6%–100%; 40–50 min, 100%. The unknown species with
m/z 284.0872 eluted at 6.6 min.
Collision induced dissociation (CID) experiments were per-

formed using an Agilent 1200 HPLC with the same Thermo
Scientific Hypersil GOLD aQ reverse-phase column coupled to
the QTOFmass spectrometer. HPLC resolution was performed iso-
cratically with 8 mM ammonium acetate at a flow rate of 70 µL/min
for 20 min and 36°C. The unknown species withm/z 284.0872 elut-
ed at 4.27 min and 5-cyanomethyl-2′-deoxyuridine eluted at 3.56
min. The initial CID analysis of 5-cyanomethyl-2′-deoxyuridine
and the unknown molecular species was performed in targeted
MS/MS mode on m/z 268.0928 or m/z 284.08771, respectively,
and a fragmentor voltage of 140 V or 90 V, respectively, with colli-
sion energies of 5 V, 10 V, or 15 V used to optimize product ion for-
mation. In-source fragmentation and subsequent CID analysis of
protonated base was used to perform pseudo-MS3 analysis of both
5-cyanomethyl-2′-deoxyuridine and the unknown molecular spe-
cies. In this analysis, a fragmentor voltage 300 V was used in targeted
MS/MS on the m/z 152.04545 fragment of 5-cyanomethyl-2′-deox-
yuridine, with collision energies of 5 V, 10 V, or 15 V. For the un-
known species, a fragmentor voltage of 160 V was used for
targeted MS/MS on the m/z 152.04545 fragment of the unknown
ribonucleoside.
Subsequent fragmentation analysis by triple-quadrupole (QqQ)

mass spectrometry was performed by MRM analysis using an
Agilent 1100 HPLC with a Thermo Scientific Hypersil GOLD aQ
column (150 × 2.1 mm, 3 µm particle size) coupled to an Agilent

6410 QqQ mass spectrometer. For analysis of 5-cyanomethyl-2′-
deoxyuridine and the purified unknown species, ribonucleosides
were eluted isocratically with 8 mM ammonium acetate at a flow
rate of 0.2 mL/min for 20 min and 36°C. The QqQ mass spectrom-
eter with an electrospray ionization source was operated in positive
ion mode with the following parameters: drying gas temperature,
325°C; drying gas flow, 8 L/min; nebulizer, 30 psi; and capillary
voltage, 4000 V. The first and third quadrupoles (Q1 and Q3)
were set to unit resolution and the monitored ion transitions.
The m/z of the transmitted parent ion, m/z of the monitored prod-
uct ion, fragmentor voltage, and collision energy, respectively, for
5-cyanomethyl-2′-deoxyuridine were as follows: 268.2→152.1, 90
V, 5 V; 152.1→125.1, 140 V, 5 V; 125.1→82.1, 150 V, 10 V;
82.1→39, 160 V, 15 V. For cnm5U, the parameters were:
284.2→152.1, 90 V, 5 V; 152.1→125.1, 140 V, 5 V; 125.1→82.1,
150 V, 10 V; 82.1→39, 170 V, 15 V. All MRM produced peaks at
the same retention time (transition 82.1→39 shown in Fig. 7B, in-
set), suggesting they are from the same parent compound.
Detection of cnm5U in purified tRNA or total tRNA was achieved
by resolving enzymatic hydrolysates on the reversed-phase HPLC
column with a gradient of water to acetonitrile containing 8 mM
ammonium acetate at a flow rate of 0.2 mL/min and 36°C: 0–15
min, 0%; 15–16 min, 0%–100%; 16–20 min, 100%; 20–21 min,
100%–0%. The QqQ mass spectrometer was operated in positive
ion mode with the following parameters: gas temperature, 325°C;
gas flow, 10 L/min; nebulizer, 20 psi; and capillary voltage, 4000
V. The m/z of the transmitted parent ion, m/z of the monitored
product ion, fragmentor voltage, and collision energy were as fol-
lows: 284.2→125.1, 110 V, 15 V; 152.1→125.1, 140 V, 10 V;
152.1→82.1, 140 V, 15 V.
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