6 research outputs found

    Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy

    Get PDF
    Aims Nationwide large-scale genetic and outcome studies in cohorts with hypertrophic cardiomyopathy (HCM) have not been previously published. Methods and results We sequenced 59 cardiomyopathy-associated genes in 382 unrelated Finnish patients with HCM and found 24 pathogenic or likely pathogenic mutations in six genes in 38.2% of patients. Most mutations were located in sarcomere genes (MYBPC3, MYH7, TPM1, and MYL2). Previously reported mutations by our study group (MYBPC3-Gln1061Ter, MYH7-Arg1053Gln, and TPM1-Asp175Asn) and a fourth major mutation MYH7-Val606Met accounted for 28.0% of cases. Mutations in GLA and PRKAG2 were found in three patients. Furthermore, we found 49 variants of unknown significance in 31 genes in 20.4% of cases. During a 6.7 +/- 4.2 year follow-up, annual all-cause mortality in 482 index patients and their relatives with HCM was higher than that in the matched Finnish population (1.70 vs. 0.87%; P <0.001). Sudden cardiac deaths were rare (n = 8). Systolic heart failure (hazard ratio 17.256, 95% confidence interval 3.266-91.170, P = 0.001) and maximal left ventricular wall thickness (hazard ratio 1.223, 95% confidence interval 1.098-1.363, P <0.001) were independent predictors of HCM-related mortality and life-threatening cardiac events. The patients with a pathogenic or likely pathogenic mutation underwent an implantable cardioverter defibrillator implantation more often than patients without a pathogenic or likely pathogenic mutation (12.9 vs. 3.5%, P <0.001), but there was no difference in all-cause or HCM-related mortality between the two groups. Mortality due to HCM during 10 year follow-up among the 5.2 million population of Finland was studied from death certificates of the National Registry, showing 269 HCM-related deaths, of which 32% were sudden. Conclusions We identified pathogenic and likely pathogenic mutations in 38% of Finnish patients with HCM. Four major sarcomere mutations accounted for 28% of HCM cases, whereas HCM-related mutations in non-sarcomeric genes were rare. Mortality in patients with HCM exceeded that of the general population. Finally, among 5.2 million Finns, there were at least 27 HCM-related deaths annually.Peer reviewe

    Clinical and Genetic Characterization of 153 Patients with Persistent or Transient Congenital Hyperinsulinism

    Get PDF
    Context: Major advances have been made in the genetics and classification of congenital hyperinsulinism (CHI). Objective: To examine the genetics and clinical characteristics of patients with persistent and transient CHI. Design: A cross-sectional study with the register data and targeted sequencing of 104 genes affecting glucose metabolism. Patients: Genetic and phenotypic data were collected from 153 patients with persistent (n = 95) and transient (n = 58) CHI diagnosed between 1972 and 2015. Of these, 86 patients with persistent and 58 with transient CHI participated in the analysis of the selected 104 genes affecting glucose metabolism, including 10 CHI-associated genes, and 9 patients with persistent CHI were included because of their previously confirmed genetic diagnosis. Main outcome measures: Targeted next-generation sequencing results and genotype-phenotype associations. Results: Five novel and 21 previously reported pathogenic or likely pathogenic variants in ABCC8, KCNJ11, GLUD1, GCK, HNF4A, and SLC16A1 genes were found in 68% (n = 65) and 0% of the patients with persistent and transient CHI, respectively. K-ATP channel mutations explained 82% of the mutation positive cases. Conclusions: The genetic variants found in this nationwide CHI cohort are in agreement with previous studies, mutations in the KATP channel genes being the major causes of the disease. Pathogenic CHI-associated variants were not identified in patients who were both diazoxide responsive and able to discontinue medication within the first 4 months. Therefore, our results support the notion that genetic testing should be focused on patients with inadequate response or prolonged need for medication.Peer reviewe

    Metabolite Signature in the Carriers of Pathogenic Genetic Variants for Cardiomyopathy: A Population-Based METSIM Study

    No full text
    Hypertrophic (HCM) and dilated (DCM) cardiomyopathies are among the leading causes of sudden cardiac death. We identified 38 pathogenic or likely pathogenic variant carriers for HCM in three sarcomere genes (MYH7, MYBPC3, TPMI) among 9.928 participants of the METSIM Study having whole exome sequencing data available. Eight of them had a clinical diagnosis of HCM. We also identified 20 pathogenic or likely pathogenic variant carriers for DCM in the TTN gene, and six of them had a clinical diagnosis of DCM. The aim of our study was to investigate the metabolite signature in the carriers of the pathogenic or likely pathogenic genetic variants for HCM and DCM, compared to age- and body-mass-index-matched controls. Our novel findings were that the carriers of pathogenic or likely pathogenic variants for HCM had significantly increased concentrations of bradykinin (des-arg 9), vanillactate, and dimethylglycine and decreased concentrations of polysaturated fatty acids (PUFAs) and lysophosphatidylcholines compared with the controls without HCM. Additionally, our novel findings were that the carriers of pathogenic or likely pathogenic variants for DCM had significantly decreased concentrations of 1,5-anhydrogluticol, histidine betaine, N-acetyltryptophan, and methylsuccinate and increased concentrations of trans-4-hydroxyproline compared to the controls without DCM. Our population-based study shows that the metabolite signature of the genetic variants for HCM and DCM includes several novel metabolic pathways not previously described

    Late-onset and classic phenotypes of Fabry disease in males with the GLA-Thr410Ala mutation

    No full text
    Objective To present phenotypic characteristics and biomarkers of a family with the rare mutation Thr410Ala of the α-galactosidase A gene (T410A/GLA) causing Fabry disease (FD).Methods and results In a woman in her 60s with hypertrophic cardiomyopathy, T410A/GLA was found in screening for variants in 59 cardiomyopathy-related genes. Her son in his 40s, two granddaughters and two great grandsons carried T410A/GLA. The son had a history of hypertension and paroxysmal AF but no microalbuminuria or classic symptoms or signs of FD. Baseline α-galactosidase A enzyme (α-Gal A) activity varied from 0% to 26.5%. Cardiac MRI showed mild Fabry cardiomyopathy (FC). During 11 years of enzyme replacement therapy (ERT), FC progressed and he suffered sudden cardiac death in his 50s. The great grandsons with T410A/GLA had no active α-Gal A, high lyso-Gb3 levels and normal cardiac imaging. They suffered from neuropathic pain and gastrointestinal symptoms and were started with ERT at the age under 10. Granddaughters with T410A/GLA had α-Gal A activities of 8–18 and 10% of normal. The older granddaughter in her 30s was diagnosed with incipient FC. Plasma lyso-Gb3 analogues were elevated, markedly in the elder male with FC and moderately in the elder granddaughter. In young males with classic phenotype, plasma lyso-Gb3 analogues were only slightly elevated.Conclusions The T410A/GLA mutation caused late-onset FD with progressive cardiomyopathy in elder male, and classic FD in young males of the same family. Varying levels of α-Gal A and lyso-Gb3 analogues reflected variable phenotype of FD in the family

    Molecular epidemiology of hereditary ataxia in Finland

    No full text
    Abstract Background: The genetics of cerebellar ataxia is complex. Hundreds of causative genes have been identified, but only a few cause more than single cases. The spectrum of ataxia-causing genes differs considerably between populations. The aim of the study was to investigate the molecular epidemiology of ataxia in the Finnish population. Patients and methods: All patients in hospital database were reviewed for the diagnosis of unspecified ataxia. Acquired ataxias and nongenetic ataxias such as those related to infection, trauma or stroke were excluded. Sixty patients with sporadic ataxia with unknown etiology and 36 patients with familial ataxia of unknown etiology were recruited in the study. Repeat expansions in the SCA genes (ATXN1, 2, 3, 7, 8/OS, CACNA1A, TBP), FXN, and RFC1 were determined. Point mutations in POLG, SPG7 and in mitochondrial DNA (mtDNA) were investigated. In addition, DNA from 8 patients was exome sequenced. Results: A genetic cause of ataxia was found in 33 patients (34.4%). Seven patients had a dominantly inherited repeat expansion in ATXN8/OS. Ten patients had mitochondrial ataxia resulting from mutations in nuclear mitochondrial genes POLG or RARS2, or from a point mutation m.8561C &gt; G or a single deletion in mtDNA. Interestingly, five patients were biallelic for the recently identified pathogenic repeat expansion in RFC1. All the five patients presented with the phenotype of cerebellar ataxia, neuropathy, and vestibular areflexia (CANVAS). Moreover, screening of 54 patients with Charcot-Marie-Tooth neuropathy revealed four additional patients with biallelic repeat expansion in RFC1, but none of them had cerebellar symptoms. Conclusions: Expansion in ATXN8/OS results in the majority of dominant ataxias in Finland, while mutations in RFC1 and POLG are the most common cause of recessive ataxias. Our results suggest that analysis of RFC1 should be included in the routine diagnostics of idiopathic ataxia and Charcot-Marie-Tooth polyneuropathy

    Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy

    Get PDF
    Abstract Aims: Nationwide large‐scale genetic and outcome studies in cohorts with hypertrophic cardiomyopathy (HCM) have not been previously published. Methods and results: We sequenced 59 cardiomyopathy‐associated genes in 382 unrelated Finnish patients with HCM and found 24 pathogenic or likely pathogenic mutations in six genes in 38.2% of patients. Most mutations were located in sarcomere genes (MYBPC3, MYH7, TPM1, and MYL2). Previously reported mutations by our study group (MYBPC3‐Gln1061Ter, MYH7‐Arg1053Gln, and TPM1‐Asp175Asn) and a fourth major mutation MYH7‐Val606Met accounted for 28.0% of cases. Mutations in GLA and PRKAG2 were found in three patients. Furthermore, we found 49 variants of unknown significance in 31 genes in 20.4% of cases. During a 6.7 ± 4.2 year follow‐up, annual all‐cause mortality in 482 index patients and their relatives with HCM was higher than that in the matched Finnish population (1.70 vs. 0.87%; P &lt; 0.001). Sudden cardiac deaths were rare (n = 8). Systolic heart failure (hazard ratio 17.256, 95% confidence interval 3.266–91.170, P = 0.001) and maximal left ventricular wall thickness (hazard ratio 1.223, 95% confidence interval 1.098–1.363, P &lt; 0.001) were independent predictors of HCM‐related mortality and life‐threatening cardiac events. The patients with a pathogenic or likely pathogenic mutation underwent an implantable cardioverter defibrillator implantation more often than patients without a pathogenic or likely pathogenic mutation (12.9 vs. 3.5%, P &lt; 0.001), but there was no difference in all‐cause or HCM‐related mortality between the two groups. Mortality due to HCM during 10 year follow‐up among the 5.2 million population of Finland was studied from death certificates of the National Registry, showing 269 HCM‐related deaths, of which 32% were sudden. Conclusions: We identified pathogenic and likely pathogenic mutations in 38% of Finnish patients with HCM. Four major sarcomere mutations accounted for 28% of HCM cases, whereas HCM‐related mutations in non‐sarcomeric genes were rare. Mortality in patients with HCM exceeded that of the general population. Finally, among 5.2 million Finns, there were at least 27 HCM‐related deaths annually.Acknowledgements The FinHCM Study Group: Helena Kervinen10 (HyvinkÀÀ Hospital, HyvinkÀÀ, Finland), Juha Mustonen11 (North Karelia Central Hospital, Joensuu, Finland), Jukka Juvonen12 (Kainuu Central Hospital, Kajaani, Finland), Mari Niemi13 (Kokkola Central Hospital, Kokkola, Finland), Paavo Uusimaa14 (Oulu University Hospital, Oulu, Finland), Juhani Junttila14 (Oulu University Hospital, Oulu, Finland), Matti Kotila15 (SeinĂ€joki Central Hospital, SeinĂ€joki, Finland), Mikko PietilĂ€16 (Turku University Hospital, Turku, Finland), Heini JyrkilĂ€17 (University of Eastern Finland, Kuopio, Finland), Ilkka MĂ€hönen18 (University of Tampere, Tampere, Finland), Paula Vartia19 (University of Helsinki, Helsinki, Finland)
    corecore