232 research outputs found
A Decidable Confluence Test for Cognitive Models in ACT-R
Computational cognitive modeling investigates human cognition by building
detailed computational models for cognitive processes. Adaptive Control of
Thought - Rational (ACT-R) is a rule-based cognitive architecture that offers a
widely employed framework to build such models. There is a sound and complete
embedding of ACT-R in Constraint Handling Rules (CHR). Therefore analysis
techniques from CHR can be used to reason about computational properties of
ACT-R models. For example, confluence is the property that a program yields the
same result for the same input regardless of the rules that are applied.
In ACT-R models, there are often cognitive processes that should always yield
the same result while others e.g. implement strategies to solve a problem that
could yield different results. In this paper, a decidable confluence criterion
for ACT-R is presented. It allows to identify ACT-R rules that are not
confluent. Thereby, the modeler can check if his model has the desired
behavior.
The sound and complete translation of ACT-R to CHR from prior work is used to
come up with a suitable invariant-based confluence criterion from the CHR
literature. Proper invariants for translated ACT-R models are identified and
proven to be decidable. The presented method coincides with confluence of the
original ACT-R models.Comment: To appear in Stefania Costantini, Enrico Franconi, William Van
Woensel, Roman Kontchakov, Fariba Sadri, and Dumitru Roman: "Proceedings of
RuleML+RR 2017". Springer LNC
Performance of the starâshaped flyer in the study of brittle materials: Three dimensional computer simulations and experimental observations
A three dimensional finite element computer simulation has been performed to assess the effects of release waves in normal impact softârecovery experiments when a starâshaped flyer plate is used. Their effects on the monitored velocityâtime profiles have been identified and their implications in the interpretation of wave spreading and spall signal events highlighted. The calculation shows that the starâshaped flyer plate indeed minimizes the magnitude of edge effects. The major perturbation to the oneâdimensional response within the central region of the target plate results from spherical waves emanating from the corners of the starâshaped plate. Experimental evidence of the development of a damage ring located in coincidence with the eight entrant corners of the flyer plate is reported. Microscopy studies performed in the intact recovered samples revealed that this damage ring eliminates undesired boundary release waves within the central region of the specimen. Consequently, the observed damage in compression and tension within this region can be attributed primarily to the conditions arising from a state of uniaxial strain.
Investigation of the ultra-fast structural changes in metal-organic complexes: comparison spectroscopy and time-resolved XRD
Our aim is a detailed understanding of the ultrafast structrual dynamics and the underlying basic machanisms of molecular switches under optical excitation, which are still not fully understood in its variety. In order to monitor the occurring structural changes in molecules and alloys we are taking advantage of time-resolved x-ray diffraction measurements. but since the important electronic changes due to optical excitation take place on very short ps- and sub-ps timescales it gives rise to the necessity of faster time resolved measurements than those which are currently possible at third generation synchrotrons. Besides new attempts of directly monitoring the structural changes with shorter x-ray pulses by femtosecond FEL- an XPS-pump-probe experiments, we are currently gaining more insight in the structural dynamics by indirect measurements using our fs-time-resolved transient absorption spectroscopy. Therefore we will present our recent spectroscopic data of a metal-organic complex which will be related to certain structural changes, while the near future aim is to prove these by further x-ray experiments
Performance of the starâshaped flyer in the study of brittle materials: Three dimensional computer simulations and experimental observations
A three dimensional finite element computer simulation has been performed to assess the effects of release waves in normal impact softârecovery experiments when a starâshaped flyer plate is used. Their effects on the monitored velocityâtime profiles have been identified and their implications in the interpretation of wave spreading and spall signal events highlighted. The calculation shows that the starâshaped flyer plate indeed minimizes the magnitude of edge effects. The major perturbation to the oneâdimensional response within the central region of the target plate results from spherical waves emanating from the corners of the starâshaped plate. Experimental evidence of the development of a damage ring located in coincidence with the eight entrant corners of the flyer plate is reported. Microscopy studies performed in the intact recovered samples revealed that this damage ring eliminates undesired boundary release waves within the central region of the specimen. Consequently, the observed damage in compression and tension within this region can be attributed primarily to the conditions arising from a state of uniaxial strain.
Recommended from our members
Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency
NOTCH1 pathway activation contributes to the pathogenesis of over 60% of T-cell acute lymphoblastic leukemia (T-ALL). While Notch is thought to exert the majority of its effects through transcriptional activation of Myc, it also likely has independent roles in T-ALL malignancy. Here, we utilized a zebrafish transgenic model of T-ALL, where Notch does not induce Myc transcription, to identify a novel Notch gene expression signature that is also found in human T-ALL and is regulated independently of Myc. Cross-species microarray comparisons between zebrafish and mammalian disease identified a common T-ALL gene signature, suggesting that conserved genetic pathways underlie T-ALL development. Functionally, Notch expression induced a significant expansion of pre-leukemic clones; however, a majority of these clones were not fully transformed and could not induce leukemia when transplanted into recipient animals. Limiting-dilution cell transplantation revealed that Notch signaling does not increase the overall frequency of leukemia-propagating cells (LPCs), either alone or in collaboration with Myc. Taken together, these data indicate that a primary role of Notch signaling in T-ALL is to expand a population of pre-malignant thymocytes, of which a subset acquire the necessary mutations to become fully transformed LPCs
Growth aspirations and social capital:young firms in a post-conflict environment
This article explores the growth aspirations of owners and managers of young firms in a post-conflict economy by focusing on social capital. It treats social capital as a multidimensional, multilevel phenomenon, studying the effects of discussion network characteristics, trust in institutions, generalised trust in people and local ethnic pluralism. We argue that in a post-conflict country, ethnic pluralism is indicative of local norms of tolerance towards experimentation and risk taking which support growth aspirations. It also distinguishes between the aspirations of hired managers and owners-managers. The empirical counterpart and hypotheses testing rely on survey evidence drawn from young businesses in Bosnia and Herzegovina
PerBrain: a multimodal approach to personalized tracking of evolving state-of-consciousness in brain-injured patients: protocol of an international, multicentric, observational study
BACKGROUND: Disorders of consciousness (DoC) are severe neurological conditions in which consciousness is impaired to various degrees. They are caused by injury or malfunction of neural systems regulating arousal and awareness. Over the last decades, major efforts in improving and individualizing diagnostic and prognostic accuracy for patients affected by DoC have been made, mainly focusing on introducing multimodal assessments to complement behavioral examination. The present EU-funded multicentric research project âPerBrainâ is aimed at developing an individualized diagnostic hierarchical pathway guided by both behavior and multimodal neurodiagnostics for DoC patients. METHODS: In this project, each enrolled patient undergoes repetitive behavioral, clinical, and neurodiagnostic assessments according to a patient-tailored multi-layer workflow. Multimodal diagnostic acquisitions using state-of-the-art techniques at different stages of the patientsâ clinical evolution are performed. The techniques applied comprise well-established behavioral scales, innovative neurophysiological techniques (such as quantitative electroencephalography and transcranial magnetic stimulation combined with electroencephalography), structural and resting-state functional magnetic resonance imaging, and measurements of physiological activity (i.e. nasal airflow respiration). In addition, the well-being and treatment decision attitudes of patientsâ informal caregivers (primarily family members) are investigated. Patient and caregiver assessments are performed at multiple time points within one year after acquired brain injury, starting at the acute disease phase. DISCUSSION: Accurate classification and outcome prediction of DoC are of crucial importance for affected patients as well as their caregivers, as individual rehabilitation strategies and treatment decisions are critically dependent on the latter. The PerBrain project aims at optimizing individual DoC diagnosis and accuracy of outcome prediction by integrating data from the suggested multimodal examination methods into a personalized hierarchical diagnosis and prognosis procedure. Using the parallel tracking of both patientsâ neurological status and their caregiversâ mental situation, well-being, and treatment decision attitudes from the acute to the chronic phase of the disease and across different countries, this project aims at significantly contributing to the current clinical routine of DoC patients and their family members. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04798456. Registered 15 March 2021 â Retrospectively registered
The annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas in GaAs/AlGaAs heterostructures
Ohmic contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs
heterostructures are often realized by annealing of AuGe/Ni/Au that is
deposited on its surface. We studied how the quality of this type of ohmic
contact depends on the annealing time and temperature, and how optimal
parameters depend on the depth of the 2DEG below the surface. Combined with
transmission electron microscopy and energy-dispersive X-ray spectrometry
studies of the annealed contacts, our results allow for identifying the
annealing mechanism and proposing a model that can predict optimal annealing
parameters for a certain heterostructure.Comment: 9 pages, 4 figure
Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis
This paper describes a two-dimensional (2D) finite element simulation for
fracture and fatigue behaviours of pure alumina microstructures such as those
found at hip prostheses. Finite element models are developed using actual Al2O3
microstructures and a bilinear cohesive zone law. Simulation conditions are
similar to those found at a slip zone in a dry contact between a femoral head
and an acetabular cup of hip prosthesis. Contact stresses are imposed to
generate cracks in the models. Magnitudes of imposed stresses are higher than
those found at the microscopic scale. Effects of microstructures and contact
stresses are investigated in terms of crack formation. In addition, fatigue
behaviour of the microstructure is determined by performing simulations under
cyclic loading conditions. It is shown that crack density observed in a
microstructure increases with increasing magnitude of applied contact stress.
Moreover, crack density increases linearly with respect to the number of
fatigue cycles within a given contact stress range. Meanwhile, as applied
contact stress increases, number of cycles to failure decreases gradually.
Finally, this proposed finite element simulation offers an effective method for
identifying fracture and fatigue behaviours of a microstructure provided that
microstructure images are available
- âŠ