1,616 research outputs found

    Causes and biophysical consequences of cellulose production by Pseudomonas fluorescens SBW25 at the air-liquid interface

    No full text
    Cellulose over-producing wrinkly spreader mutants of Pseudomonas fluorescens SBW25 have been the focus of much investigation, but conditions promoting the production of cellulose in ancestral SBW25, its effects and consequences have escaped in-depth investigation through lack of in vitro phenotype. Here, using a custom built device, we reveal that in static broth microcosms ancestral SBW25 encounters environmental signals at the air-liquid interface that activate, via three diguanylate cyclase-encoding pathways (Wsp, Aws and Mws), production of cellulose. Secretion of the polymer at the meniscus leads to modification of the environment and growth of numerous micro-colonies that extend from the surface. Accumulation of cellulose and associated microbial growth leads to Rayleigh-Taylor instability resulting in bioconvection and rapid transport of water-soluble products over tens of millimetres. Drawing upon data we build a mathematical model that recapitulates experimental results and captures the interactions between biological, chemical and physical processes.IMPORTANCE This work reveals a hitherto unrecognized behaviour that manifests at the air-liquid interface, which depends on production of cellulose, and hints to undiscovered dimensions to bacterial life at surfaces. Additionally, the study links activation of known diguanylate cyclase-encoding pathways to cellulose expression and to signals encountered at the meniscus. Further significance stems from recognition of the consequences of fluid instabilities arising from surface production of cellulose for transport of water-soluble products over large distances

    In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella

    Get PDF
    The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents

    Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells

    Get PDF
    Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important approach to dengue control. To better understand the mechanisms of virus inhibition, we here perform proteomic quantification of the effects of Wolbachia in Aedes aegypti mosquito cells and midgut. Perturbations are observed in vesicular trafficking, lipid metabolism and in the endoplasmic reticulum that could impact viral entry and replication. Wolbachia-infected cells display a differential cholesterol profile, including elevated levels of esterified cholesterol, that is consistent with perturbed intracellular cholesterol trafficking. Cyclodextrins have been shown to reverse lipid accumulation defects in cells with disrupted cholesterol homeostasis. Treatment of Wolbachia-infected Ae. aegypti cells with 2-hydroxypropyl-β-cyclodextrin restores dengue replication in Wolbachia-carrying cells, suggesting dengue is inhibited in Wolbachia-infected cells by localised cholesterol accumulation. These results demonstrate parallels between the cellular Wolbachia viral inhibition phenotype and lipid storage genetic disorders

    War and dissociation : the case of futurist aesthetics

    Get PDF
    Thanks to their deliberate engagement in state propaganda Italian Futurists deserved a prominent spot in the history of military aesthetics in the 20th century. However, under what looked like an unequivocal expression of support for war, lied a deep philosophical disagreement concerning its existential and epistemological value. The bone of contention concerned the effects of warfare on perception and, consequently, the means of its depiction. The author analyses this intellectual disagreement within the group and focuses, in particular, on its philosophical implications

    Anderson Localization, Non-linearity and Stable Genetic Diversity

    Full text link
    In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasispecies, unless the mutation rate is too high, in which case the populations of different genotypes becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random replication term in the linear model displays features analogous to Anderson localization. When coupled with non-linearities that limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversityComment: 25 pages, 8 Figure

    Update on the electrolytic IVC model for pre‐clinical studies of venous thrombosis

    Full text link
    EssentialsThree key updates are provided on the electrolytic inferior vena cava model (EIM).The originally described stimulator equipment has been discontinued; we developed an alternative.The fibrinolytic system and the current and time dependency of the EIM was characterized.EIM allows the investigation of the fibrinolytic system, critical for endovascular therapies.BackgroundThe electrolytic inferior vena cava model (EIM) is a murine venous thrombosis (VT) model that produces a non‐occlusive thrombus. The thrombus forms in the direction of blood flow, as observed in patients. The EIM is valuable for investigations of therapeutics due to the presence of continuous blood flow. However, the equipment used to induce thrombosis in the original model description was expensive and has since been discontinued. Further, the fibrinolytic system had not been previously studied in the EIM.ObjectivesWe aimed to provide an equipment alternative. Additionally, we further characterized the model through mapping the current and time dependency of thrombus resolution dynamics, and investigated the fibrinolytic system from acute to chronic VT.ResultsA voltage to current converter powered by a direct current power supply was constructed and validated, providing an added benefit of significantly reducing costs. The current and time dependency of thrombus volume dynamics was assessed by MRI, demonstrating the flexibility of the EIM to investigate both pro‐thrombotic and anti‐thrombotic conditions. Additionally, the fibrinolytic system was characterized in EIM. Centripetal distribution of plasminogen was observed over time, with peak staining at day 6 post thrombus induction. Both active circulating plasminogen activator inhibitor‐1 (PAI‐1) and vein wall gene expression of PAI‐1 peaked at day 2, coinciding with a relative decrease in tissue plasminogen activator and urokinase plasminogen activator.ConclusionsThe EIM is a valuable model of VT that can now be performed at low cost and may be beneficial in investigations of the fibrinolytic system.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143801/1/rth212074.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143801/2/rth212074_am.pd

    Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actnidiae provides insight into the origins of an emergent plant disease

    No full text
    The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries – even millennia – ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease
    corecore