In many models of genotypic evolution, the vector of genotype populations
satisfies a system of linear ordinary differential equations. This system of
equations models a competition between differential replication rates (fitness)
and mutation. Mutation operates as a generalized diffusion process on genotype
space. In the large time asymptotics, the replication term tends to produce a
single dominant quasispecies, unless the mutation rate is too high, in which
case the populations of different genotypes becomes de-localized. We introduce
a more macroscopic picture of genotypic evolution wherein a random replication
term in the linear model displays features analogous to Anderson localization.
When coupled with non-linearities that limit the population of any given
genotype, we obtain a model whose large time asymptotics display stable
genotypic diversityComment: 25 pages, 8 Figure