research

Anderson Localization, Non-linearity and Stable Genetic Diversity

Abstract

In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasispecies, unless the mutation rate is too high, in which case the populations of different genotypes becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random replication term in the linear model displays features analogous to Anderson localization. When coupled with non-linearities that limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversityComment: 25 pages, 8 Figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 15/03/2019