1,040 research outputs found

    Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity

    Get PDF
    International audienceThe thermal conductivity of mantle materials has two components, the lattice component klat from phonons and the radiative component krad due to photons. These two contributions of variable thermal conductivity have a nonlinear dependence in the temperature, thus endowing the temperature equation in mantle convection with a strongly nonlinear character. The temperature derivatives of these two mechanisms have different signs, with ?klat /?T negative and dkrad /dT positive. This offers the possibility for the radiative conductivity to control the chaotic boundary layer instabilities developed in the deep mantle. We have parameterized the weight factor between krad and klat with a dimensionless parameter f , where f = 1 corresponds to the reference conductivity model. We have carried out two-dimensional, time-dependent calculations for variable thermal conductivity but constant viscosity in an aspect-ratio 6 box for surface Rayleigh numbers between 106 and 5 × 106. The averaged PĂ©clet numbers of these flows lie between 200 and 2000. Along the boundary in f separating the chaotic and steady-state solutions, the number decreases and the Nusselt number increases with internal heating, illustrating the feedback between internal heating and radiative thermal conductivity. For purely basal heating situation, the time-dependent chaotic flows become stabilized for values of f of between 1.5 and 2. The bottom thermal boundary layer thickens and the surface heat flow increases with larger amounts of radiative conductivity. For magnitudes of internal heating characteristic of a chondritic mantle, much larger values of f , exceeding 10, are required to quench the bottom boundary layer instabilities. By isolating the individual conductive mechanisms, we have ascertained that the lattice conductivity is partly responsible for inducing boundary layer instabilities, while the radiative conductivity and purely depth-dependent conductivity exert a stabilizing influence and help to control thermal chaos developed in the deep mantle. These results have been verified to exist also in three-dimensional geometry and would argue for the need to consider the potentially important role played by radiative thermal conductivity in controlling chaotic flows in time-dependent mantle convection, the mantle heat transfer, the number of hotspots and the attendant mixing of geochemical anomalies

    Exact and semiclassical approach to a class of singular integral operators arising in fluid mechanics and quantum field theory

    Full text link
    A class of singular integral operators, encompassing two physically relevant cases arising in perturbative QCD and in classical fluid dynamics, is presented and analyzed. It is shown that three special values of the parameters allow for an exact eigenfunction expansion; these can be associated to Riemannian symmetric spaces of rank one with positive, negative or vanishing curvature. For all other cases an accurate semiclassical approximation is derived, based on the identification of the operators with a peculiar Schroedinger-like operator.Comment: 12 pages, 1 figure, amslatex, bibtex (added missing label eq.11

    Plasma high‐density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume

    Get PDF
    Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE Δ4 carriers and lowest in APOE Δ4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    “I am a young immigrant woman doing physics and on top of that I am Muslim”:Identities, intersections, and negotiations

    Get PDF
    Framed within intersectionality and using science identity as a unit of analysis, in this single case study I explore the barriers, difficulties, and conflicts that Amina, a young Muslim woman, immigrant in Western Europe confronted throughout her trajectory in physics and the ways in which her multiple identities intersected. The main sources of data consisted of three long biographical interviews, which were analyzed through a constant comparative method. The analysis of the data provided insights into how intrapersonal, interpersonal, sociocultural factors, alongside a myriad of experiences nurtured Amina's intersectional identities and what this may mean for Muslim women's participation in physics. The findings are summarized in two main assertions: (a) Amina was confronted with various barriers across her journey in physics with the intersection of religion and gender being the major barrier to her perceived recognition due to cultural expectations, sociopolitical factors, and negative stereotypes and (b) Amina's social class, religion, gender performance, and ethnic status positioned her as Other in various places throughout her trajectory in physics, and consequently hindered her sense of belonging. These findings suggest the urgency and importance of: (a) examining the intersection of science identity with other identities, especially, religion, gender, and ethnicity for the purpose of extrapolating a more comprehensive understanding of how minoritized groups participate in science; (b) rethinking recognition through an explicit intersectionality lens across various geographical and sociopolitical contexts; and (c) transforming physics into a diverse world where multiple ways of being are recognized, where minoritized groups will not have to compartmentalize parts of their identities to exist, and where they can perform their authentic and intersectional identities

    Extracolonic features of familial adenomatous polyposis in patients with sporadic colorectal cancer.

    Get PDF
    We have investigated the occurrence of attenuated extracolonic manifestations (AEMs) of familial adenomatous polyposis (FAP) in patients with non-polyposis colorectal cancer. In a prospective case-control study, we observed that significantly more colorectal cancer patients exhibited AEM than did age and sex-matched controls (19.5% vs 7.5%, P < 0.004). However patients with AEMs do not have occult FAP, as we found no heterozygous adenomatous polyposis coli (APC) gene mutations despite extensive analysis of constitutional DNA. Genome-wide DNA replication errors (RERs) occur in a proportion of colorectal cancers, particularly right-sided lesions and in almost all tumours from hereditary non-polyposis colorectal cancer (HNPCC) patients. As AEMs have been reported in familial colon cancer cases, we investigated the relationship of AEMs to tumour RER phenotype. There was indeed an excess of AEMs in patients with right-sided tumours (30.2% of 53 patients vs 14.7% of 116 patients, P < 0.03) and in those with RER tumours (3 out of 12 patients with RER tumours vs none out of 21 patients with non-RER tumours, P < 0.05). Two patients with AEM were from HNPCC families compared with none of those without AEM (P < 0.05). The association of AEMs with colorectal cancer is intriguing, and we speculate that it may be a manifestation of mutational mosaicism of the APC gene, perhaps associated with a constitutional defect in DNA mismatch pair

    Anthrax Toxin Receptor 2 Determinants that Dictate the pH Threshold of Toxin Pore Formation

    Get PDF
    The anthrax toxin receptors, ANTXR1 and ANTXR2, act as molecular clamps to prevent the protective antigen (PA) toxin subunit from forming pores until exposure to low pH. PA forms pores at pH ∌6.0 or below when it is bound to ANTXR1, but only at pH ∌5.0 or below when it is bound to ANTXR2. Here, structure-based mutagenesis was used to identify non-conserved ANTXR2 residues responsible for this striking 1.0 pH unit difference in pH threshold. Residues conserved between ANTXR2 and ANTXR1 that influence the ANTXR2-associated pH threshold of pore formation were also identified. All of these residues contact either PA domain 2 or the neighboring edge of PA domain 4. These results provide genetic evidence for receptor release of these regions of PA as being necessary for the protein rearrangements that accompany anthrax toxin pore formation

    Global no net loss of natural ecosystems

    Get PDF
    A global goal of no net loss of natural ecosystems or better has recently been proposed, but such a goal would require equitable translation to country-level contributions. Given the wide variation in ecosystem depletion, these could vary from net gain (for countries where restoration is needed), to managed net loss (in rare circumstances where natural ecosystems remain extensive and human development imperative is greatest). National contributions and international support for implementation also must consider non-area targets factors such as the capacity to conserve and the imperative for human development

    Growth dynamics and the evolution of cooperation in microbial populations

    Get PDF
    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
    • 

    corecore