138 research outputs found

    MESSENGER Observations of Fast Plasma Flows in Mercury’s Magnetotail

    Full text link
    We present the first observation of fast plasma flows in Mercury’s magnetotail. Mercury experiences substorm activity phenomenologically similar to Earth’s; however, field‐of‐view limitations of the Fast Imaging Plasma Spectrometer (FIPS) prevent the instrument from detecting fast flows in the plasma sheet. Although FIPS measures incomplete plasma distributions, subsonic flows impart an asymmetry on the partial plasma distribution, even if the flow directions are outside the field of view. We combine FIPS observations from 387 intervals containing magnetic field dipolarizations to mitigate these instrument limitations. By taking advantage of variations in spacecraft pointing during these intervals, we construct composite plasma distributions from which mean flows are determined. We find that dipolarizations at Mercury are embedded within fast sunward flows with an averaged speed of ~300 km/s compared to a typical background flow of ~50 km/s.Plain Language SummarySimilar to Earth, Mercury has a global magnetic field that forms a protective cavity, known as the magnetosphere, within the solar wind. The solar wind compresses the dayside magnetosphere, while stretching the nightside magnetosphere behind the planet. Variations within the solar wind cause dynamic activity within Mercury’s magnetosphere, with a process known as magnetic reconnection mediating the interaction. Magnetic reconnection changes the topology of magnetic field lines and transfers energy and momentum from the magnetic field to the plasma within it. At Earth, magnetic reconnection in the nightside magnetosphere drives fast flows of plasma toward the planet, which when nearing the planet are slowed and diverted. These flows cannot be identified directly at Mercury because of limitations of the MESSENGER spacecraft measurements collected there. This research paper develops a new statistical technique to identify and characterize these fast flows at Mercury.Key PointsMultiple FIPS plasma observations from the MESSENGER spacecraft have been combined statistically to determine average flowsObservations collected during dipolarizations produce an average plasma flow of ~300 km/s compared to ~50 km/s during background intervalsSeveral dipolarizations are required to unload Mercury’s magnetotail during a substorm, and some flows may reach the planet’s surfacePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146314/1/grl58028.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146314/2/grl58028_am.pd

    MESSENGER Observations of Flow Braking and Flux Pileup of Dipolarizations in Mercury’s Magnetotail: Evidence for Current Wedge Formation

    Full text link
    Similar to Earth, Mercury’s magnetotail experiences frequent dipolarization of the magnetic field. These rapid (~2 s) increases in the northward component of the tail field (ΔBz ~ 30 nT) at Mercury are associated with fast sunward flows (~200 km/s) that enhance local magnetic field convection. Differences between the two magnetospheres, namely Mercury’s smaller spatiotemporal scales and lack of an ionosphere, influence the dynamics of dipolarizations in these magnetotails. At Earth, the braking of fast dipolarization flows near the inner magnetosphere accumulates magnetic flux and develops the substorm current wedge. At Mercury, flow braking and flux pileup remain open topics. In this work, we develop an automated algorithm to identify dipolarizations, which allows for statistical examination of flow braking and flux pileup in Mercury’s magnetotail. We find that near the inner edge of the plasma sheet, steep magnetic pressure gradients cause substantial braking of fast dipolarization flows. The dipolarization frequency and sunward flow speed decrease significantly within a region ~500 km thick located at ~900 km altitude above Mercury’s local midnight surface. Due to the close proximity of the braking region to the planet, we estimate that ~10–20% of dipolarizations may reach the nightside surface of the planet. The remaining dipolarizations exhibit prolonged statistical flux pileup within the braking region similar to large‐scale dipolarization of Earth’s inner magnetosphere. The existence of flow braking and flux pileup at Mercury indicates that a current wedge may form, although the limitations imposed by Mercury’s magnetosphere require the braking of multiple, continuous dipolarizations for current wedge formation.Key PointsDipolarizations in Mercury’s magnetotail encounter strong magnetic pressure gradients near the planet that brake their fast sunward flowOnly a small fraction of dipolarizations reach the nightside surface; most brake and contribute to magnetic flux pileupPileup results from the interaction of multiple dipolarizations and is consistent with Earth‐like substorm current wedge formationPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162780/2/jgra55966.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162780/1/jgra55966_am.pd

    MESSENGER observations of the dayside low‐latitude boundary layer in Mercury’s magnetosphere

    Full text link
    Observations from MErcury Surface Space ENvironment GEochemistry, and Ranging (MESSENGER)’s Magnetometer and Fast Imaging Plasma Spectrometer instruments during the first orbital year have resulted in the identification of 25 magnetopause crossings in Mercury’s magnetosphere with significant low‐latitude boundary layers (LLBLs). Of these crossings 72% are observed dawnside and 65% for northward interplanetary magnetic field. The estimated LLBL thickness is 450 ± 56 km and increases with distance to noon. The Na+ group ion is sporadically present in 14 of the boundary layers, with an observed average number density of 22 ± 11% of the proton density. Furthermore, the average Na+ group gyroradii in the layers is 220 ± 34 km, the same order of magnitude as the LLBL thickness. Magnetic shear, plasma β and reconnection rates have been estimated for the LLBL crossings and compared to those of a control group (non‐LLBL) of 61 distinct magnetopause crossings which show signs of nearly no plasma inside the magnetopause. The results indicate that reconnection is significantly slower, or even suppressed, for the LLBL crossings compared to the non‐LLBL cases. Possible processes that form or impact the LLBL are discussed. Protons injected through the cusp or flank may be important for the formation of the LLBL. Furthermore, the opposite asymmetry in the Kelvin‐Helmholtz instability (KHI) as compared to the LLBL rules out the KHI as a dominant formation mechanism. However, the KHI and LLBL could be related to each other, either by the impact of sodium ions gyrating across the magnetopause or by the LLBL preventing the growth of KH waves on the dawnside.Key PointsInvestigation, characterization, and observation of the low‐latitude boundary layer of MercuryIs there a relation between the Kelvin‐Helmholtz instability and the low‐latitude boundary layerInvestigate for what surrounding conditions the low‐latitude boundary layer occursPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136336/1/jgra52122_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136336/2/jgra52122.pd

    Large‐Amplitude Oscillatory Motion of Mercury’s Cross‐Tail Current Sheet

    Full text link
    We surveyed 4 years of MESSENGER magnetic field data and analyzed intervals with observations of large‐amplitude oscillatory motions of Mercury’s cross‐tail current sheet, or flapping waves, characterized by a decrease in magnetic field intensity and multiple reversals of BX, oscillating with a period on the order of ~4 – 25 seconds. We performed minimum variance analysis (MVA) on each flapping wave event to determine the current sheet normal. Statistical results showed that the flapping motion of the current sheet caused it to warp and tilt in the y‐z plane, which suggests that these flapping waves are kink‐type waves propagating in the cross‐tail direction of Mercury’s magnetotail. The occurrence of flapping waves shows a strong preference in Mercury’s duskside plasma sheet. We compared our results with the magnetic double‐gradient instability model and examined possible flapping wave excitation mechanism theories from internal (e.g., finite gyroradius effects of planetary sodium ions Na+ on magnetosonic waves) and external (e.g., solar wind variations and K‐H waves) sources.Key PointsLarge‐amplitude oscillations of Mercury’s cross‐tail current sheet (or flapping waves) with period of ~4 – 25 s were observedFlapping motion of Mercury’s cross‐tail current sheet warped and tilted the current sheet in the y‐z planeFlapping waves preferentially occur in Mercury’s duskside current sheetPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156232/2/jgra55803.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156232/1/jgra55803_am.pd

    Transport of Mass and Energy in Mercury’s Plasma Sheet

    Full text link
    We examined the transport of mass and energy in Mercury’s plasma sheet (PS) using MESSENGER magnetic field and plasma measurements obtained during 759 PS crossings. Regression analysis of proton density and plasma pressure shows a strong linear relationship. We calculated the polytropic index γ for Mercury’s PS to be ~0.687, indicating that the plasma in the tail PS behaves nonadiabatically as it is transported sunward. Using the average magnetic field intensity of Mercury’s tail lobe as a proxy for magnetotail activity level, we demonstrated that γ is lower during active time periods. A minimum in γ was observed at R ~ 1.4 RM, which coincides with previously observed location of Mercury’s substorm current wedge. We suggest that the nonadiabatic behavior of plasma as it is transported into Mercury’s nearâ tail region is primarily driven by particle precipitation and particle scattering due to large loss cone and particle acceleration effect, respectively.Plain Language SummaryThe transport process of mass and energy within Mercury’s magnetotail remains unexplored until now. The availability of in situ magnetic field and plasma measurements from National Aeronautics and Space Administration’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft provides us with the first opportunity to study the thermodynamic properties of particles within sunward convecting closed flux tubes in the plasma sheet. In this study, we study how mass and energy are transported in Mercury’s magnetotail by investigating the relationship between the thermal pressure and number density of the plasma in Mercury’s plasma sheet given by the equation of state in magnetohydrodynamics theory. We determined, for the first time, that the plasma behaves nonadiabatically as it is transported sunward toward Mercury. We suggest that precipitation of particles due to Mercury’s large loss cone and demagnetization of particles due to finite gyroradius effect contributes to this nonadiabatic behavior of plasma in the plasma sheet. Our results have major implications in our understanding of particle sources and sinks mechanisms in Mercury’s magnetotail.Key PointsWe calculated the value of polytropic index γ for Mercury’s plasma sheet to be ~0.687, which is smaller than 5/3 (adiabatic)Nonadiabatic plasma behavior is driven by ion precipitation and ion demagnetization due to large loss cone and finite gyroradius effectWe demonstrated that γ is lower during active time and determined a relationship between γ and the location of flow breaking regionPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147033/1/grl58293_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147033/2/grl58293.pd

    Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions

    Get PDF
    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has observed the northern magnetospheric cusp of Mercury regularly since the probe was inserted into orbit about the innermost planet in March 2011. Observations from the Fast Imaging Plasma Spectrometer (FIPS) made at altitudes 10 cm−3) that are exceeded only by those observed in the magnetosheath. These high plasma densities are also associated with strong diamagnetic depressions observed by MESSENGER's Magnetometer. Plasma in the cusp may originate from several sources: (1) Direct inflow from the magnetosheath, (2) locally produced planetary photoions and ions sputtered off the surface from solar wind impact and then accelerated upward, and (3) flow of magnetosheath and magnetospheric plasma accelerated from dayside reconnection X-lines. We surveyed 518 cusp passes by MESSENGER, focusing on the spatial distribution, energy spectra, and pitch-angle distributions of protons and Na+-group ions. Of those, we selected 77 cusp passes during which substantial Na+-group ion populations were present for a more detailed analysis. We find that Mercury's cusp is a highly dynamic region, both in spatial extent and plasma composition and energies. From the three-dimensional plasma distributions observed by FIPS, protons with mean energies of 1 keV were found flowing down into the cusp (i.e., source (1) above). The distribution of pitch angles of these protons showed a depletion in the direction away from the surface, indicating that ions within 40° of the magnetic field direction are in the loss cone, lost to the surface rather than being reflected by the magnetic field. In contrast, Na+-group ions show two distinct behaviors depending on their energy. Low-energy (100–300 eV) ions appear to be streaming out of the cusp, showing pitch-angle distributions with a strong component antiparallel to the magnetic field (away from the surface). These ions appear to have been generated in the cusp and accelerated locally (i.e., source (2) above). Higher-energy (≥1 keV) Na+-group ions in the cusp exhibit much larger perpendicular components in their energy distributions. During active times, as judged by frequent, large-amplitude magnetic field fluctuations, many more Na+-group ions are measured at latitudes south of the cusp. In several cases, these Na+-group ions in the dayside magnetosphere are flowing northward toward the cusp. The high mean energy, pitch-angle distributions, and large number of Na+-group ions on dayside magnetospheric field lines are inconsistent with direct transport into the cusp of sputtered ions from the surface or newly photoionized particles. Furthermore, the highest densities and mean energies often occur together with high-amplitude magnetic fluctuations, attributed to flux transfer events along the magnetopause. These results indicate that high-energy Na+-group ions in the cusp are likely formed by ionization of escaping neutral Na in the outer dayside magnetosphere and the magnetosheath followed by acceleration and transport into the cusp by reconnection at the subsolar magnetopause (i.e., source 3 above)

    Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Get PDF
    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind

    Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath

    Get PDF
    Measurements from the Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft during 40 orbits about Mercury are used to characterize the plasma depletion layer just exterior to the planet’s dayside magnetopause. A plasma depletion layer forms at Mercury as a result of piled-up magnetic flux that is draped around the magnetosphere. The low average upstream Alfvénic Mach number (MA ~3–5) in the solar wind at Mercury often results in large-scale plasma depletion in the magnetosheath between the subsolar magnetopause and the bow shock. Flux pileup is observed to occur downstream under both quasi-perpendicular and quasi-parallel shock geometries for all orientations of the interplanetary magnetic field (IMF). Furthermore, little to no plasma depletion is seen during some periods with stable northward IMF. The consistently low value of plasma β, the ratio of plasma pressure to magnetic pressure, at the magnetopause associated with the low average upstream MA is believed to be the cause for the high average reconnection rate at Mercury, reported to be nearly 3 times that observed at Earth. Finally, a characteristic depletion length outward from the subsolar magnetopause of ~300 km is found for Mercury. This value scales among planetary bodies as the average standoff distance of the magnetopause

    Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

    Get PDF
    We assess the statistical spatial distribution of plasma in Mercury’s magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury’s offset dipole magnetic field
    corecore