518 research outputs found

    The physics of protoplanetesimal dust agglomerates. VII The low-velocity collision behavior of large dust agglomerates

    Full text link
    We performed micro-gravity collision experiments in our laboratory drop-tower using 5-cm-sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. (2011) to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm/s to 0.5 m/s, and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. (2011). At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. The work is an extensional study to previous work of our group and gives a new insight in the velocity dependency of the coefficient of restitution due to improved measurements, better statistics and a theoretical approach

    The stratification of regolith on celestial objects

    Full text link
    All atmosphere-less planetary bodies are covered with a dust layer, the so-called regolith, which determines the optical, mechanical and thermal properties of their surface. These properties depend on the regolith material, the size distribution of the particles it consists of, and the porosity to which these particles are packed. We performed experiments in parabolic flights to determine the gravity dependency of the packing density of regolith for solid-particle sizes of 60 μ\mum and 1 mm as well as for 100-250 μ\mum-sized agglomerates of 1.5 μ\mum-sized solid grains. We utilized g-levels between 0.7 m s2^{-2} and 18 m s2^{-2} and completed our measurements with experiments under normal gravity conditions. Based on previous experimental and theoretical literature and supported by our new experiments, we developed an analytical model to calculate the regolith stratification of celestial rocky and icy bodies and estimated the mechanical yields of the regolith under the weight of an astronaut and a spacecraft resting on these objects.Comment: 15 pages, 12 figure

    Consequences of Postnatally Elevated Insulin-Like Growth Factor-II in Transgenic Mice: Endocrine Changes and Effects on Body and Organ Growth.

    Get PDF
    Insulin-like growth factor-II (IGF-II) is an important regulator of embryonic growth and differentiation, but its function in postnatal life is unclear. To address this point, we generated transgenic mice harboring fusion genes in which a human IGF-II complementary DNA is placed under the transcriptional control of the rat phosphoenolpyruvate carboxykinase promoter. Transgene-specific messenger RNA was detected in liver, kidney, and several parts of the gut. Serum IGF-II levels in transgenic mice were 2-3 times higher than those in controls and increased after starvation. Circulating IGF-I correlated negatively and IGF-binding protein-2 (IGFBP-2) positively with IGF-II levels, suggesting that IGF-I is displaced from IGFBPs by IGF-II and that IGFII is a major regulator of IGFBP-2. Serum levels of IGFBP-3 and IGFBP-4 tended to be higher in phosphoenolpyruvate carboxykinase- IGF-II transgenic mice than in controls, as evaluated by ligand blot analysis. Starvation reduced serum IGF-I, but increased IGFBP-2 in transgenic mice more markedly than in controls. Fasting insulin levels were significantly reduced in transgenic mice, whereas glucose levels were not influenced by elevated IGF-II. The body growth of 4- and 12- week-old mice was not significantly influenced by elevated IGF-II, but transgenic mice displayed increased kidney and testis weight at the age of 4 weeks, and increased adrenal weight at the age of 12 weeks. Our results demonstrate that elevated IGF-II in postnatal life has multiple endocrine consequences and subtle time-specific effects on organ growth

    The Physics of Protoplanetesimal Dust Agglomerates. Vi. Erosion of Large Aggregates as a Source of Micrometer-Sized Particles

    Full text link
    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik (2005) pointed out for the first time the difficulty in explaining the strong mid-IR excess of classical T-Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect the erosion halts within our error bars for impact velocities up to ~30 m/s. For larger velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a next step we build an analytical disk model and implement the experimentally found erosive effect. The model shows that erosion is a strong source of micrometer-sized particles in a protoplanetary disk. Finally we use the stationary solution of this model to explain the amount of micrometer-sized particles in observational infrared data of Furlan et al. (2006)

    A simulation model for the yearly energy demand of buildings with two-or-more-layered textile roofs

    Get PDF
    This document provides information and instructions for preparing a Full Paper to be included in the Proceedings of MEMBRANES 2011 Conference

    The Case ∣ Hemolysis and acute renal failure

    Get PDF

    Synthesis, effectiveness and metabolic fate in cows of the caesium complexing compound ammonium ferric hexacyanoferrate labelled with 14C

    Get PDF
    Adding ammonium ferric hexacyanoferrate (AFCF) to cows' fodder produced after the Chernobyl nuclear accident prevented milk contamination by increasing the faecal elimination of 137Cs. Synthesis of ammonium ferric hexa[14C]-cyanoferrate (AF14CF) and its purification were performed for the study of the metabolic fate of this complex, and the evaluation of the possible release of cyanide. The stability of this colloidal product, tested by anaerobic incubation in rumen juice in vitro, showed no release of free cyanide from AF14CF, but hexacyanoferrate was identified in the rumen juice and 0·13% of the added radioactivity was converted to labelled CO2. AF14CF administered per os to two cows showed a nearly quantitative excretion of radioactivity in faeces during the first 3 d (91-95%). A very low but significant level of radioactivity appeared in plasma, blood cells, expired CO2 and was detected in organs taken 9 d after administration. Total cumulative radioactivity in urine and milk amounted to 0·19-0·47% and 0·068-0·071% respectively for the two cows. Labelled hexacyanoferrate and thiocyanate were identified in the urine and also in faeces. In spite of this relative instability of AFCF in the rumen of cows, the poor absorption of AF14CF degradation products showed that AFCF constitutes an efficient and safe food additive to prevent the absorption of radioactive caesium from ruminant feed and its secretion in mil
    corecore