392 research outputs found
Applicability of the kp method to modeling of InAs/GaSb short-period superlattices
We investigate the long-standing controversy surrounding modeling of the electronic spectra of InAs/GaSb short-period superlattices (SPSLs). Most commonly, such modeling for semiconductor heterostructures is based on the kp method. However, this method has so far failed to predict the band structure for type-II InAs/GaSb SPSLs. Instead, it has systematically overestimated the energy gap between the electron and heavy-hole minibands, which led to the suggestion that the kp method is inadequate for these heterostructures. Our results show that the physical origin of the discrepancy between modeling and experimental results may be the graded and asymmetric InAs/GaSb interface profile. We have performed band-structure modeling within the kp method using a realistic interface profile based on experimental observations. Our calculations show good agreement with experimental data, both from our own measurements and from the published literature. © 2009 The American Physical Society
Microfluidic synthesis of monodisperse and size-tunable CsPbBr3 supraparticles
The highly controlled, microfluidic template-assisted self-assembly of CsPbBr3 nanocrystals into spherical supraparticles is presented, achieving precise control over average supraparticle size through the variation of nanocrystal concentration and droplet size; thus facilitating the synthesis of highly monodisperse, sub-micron supraparticles (with diameters between 280 and 700 nm)
The Influence of a Continuum Background on Carrier Relaxation in InAs/InGaAs Quantum Dot
We have investigated the ultra-fast carrier dynamics in Molecular Beam Epitaxy (MBE)-grown InAs/InGaAs/GaAs quantum dots (QDs) emitting at 1.3 μm by time resolved photoluminescence (TRPL) upconversion measurements with a time resolution of about 200 fs. Changing the detection energies in the spectral region from the energy of the quantum dots excitonic transition up to the barrier layer absorption edge, we have found that, under high excitation intensity, the intrinsic electronic states are populated mainly by carriers directly captured from the barrier
Reading the Bible through the eyes of women and the oppressed : in search for justice and liberation in Malawi
This thesis examines the importance, in the search for justice and liberation in Malawi, of reading the bible through the eyes of women and the oppressed. Serious questions have been raised in Malawian Church and Society concerning the inferiority and subordination of women and the oppressed, particularly the poor and marginalised groups and their role and place in the holy ministry. Since the establishment of the Presbyterian Church in Malawi nearly 130 years ago, women and the oppressed groups have been discriminated against in various ways. They have not taken an active share and responsibility in the whole community life of society, and have not participated fully and more widely in the various fields of the Church’s structures. The thesis critically challenges the patriarchal reading of the texts which oppresses and marginalises women, and seeks to bring respect and dignity to them by employing a historical critical reading that leads to a liberative reading. Since patriarchal reading of the texts does not bring justice and liberation to women, the thesis engages in a liberative reading that traces and restores women’s history in Mark. Our liberative reading claims that the Christian past is not just a male past where women participated only on the fringes or were not active at all, but it is as well a women’s own past. Hence, the readings of Mark 5:24-43 ;7:24-30 provide sufficient indicators for such a history of women as followers of Jesus and leading members of the early Christian communities. Thus our historical critical reading seeks to transform patriarchal reading of the texts to liberative readings that incorporate all people, men and women, upper and lower classes, different cultures and races, the powerful and the weak.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Search for Nucleon Decays induced by GUT Magnetic Monopoles with the MACRO Experiment
The interaction of a Grand Unification Magnetic Monopole with a nucleon can
lead to a barion-number violating process in which the nucleon decays into a
lepton and one or more mesons (catalysis of nucleon decay). In this paper we
report an experimental study of the effects of a catalysis process in the MACRO
detector. Using a dedicated analysis we obtain new magnetic monopole (MM) flux
upper limits at the level of for
, based on the search for
catalysis events in the MACRO data. We also analyze the dependence of the MM
flux limit on the catalysis cross section.Comment: 12 pages, Latex, 10 figures and 2 Table
Bright triplet excitons in lead halide perovskites
Nanostructured semiconductors emit light from electronic states known as
excitons[1]. According to Hund's rules[2], the lowest energy exciton in organic
materials should be a poorly emitting triplet state. Analogously, the lowest
exciton level in all known inorganic semiconductors is believed to be optically
inactive. These 'dark' excitons (into which the system can relax) hinder
light-emitting devices based on semiconductor nanostructures. While strategies
to diminish their influence have been developed[3-5], no materials have been
identified in which the lowest exciton is bright. Here we show that the lowest
exciton in quasi-cubic lead halide perovskites is optically active. We first
use the effective-mass model and group theory to explore this possibility,
which can occur when the strong spin-orbit coupling in the perovskite
conduction band is combined with the Rashba effect [6-10]. We then apply our
model to CsPbX3 (X=Cl,Br,I) nanocrystals[11], for which we measure size- and
composition-dependent fluorescence at the single-nanocrystal level. The bright
character of the lowest exciton immediately explains the anomalous
photon-emission rates of these materials, which emit 20 and 1,000 times
faster[12] than any other semiconductor nanocrystal at room[13-16] and
cryogenic[17] temperatures, respectively. The bright exciton is further
confirmed by detailed analysis of the fine structure in low-temperature
fluorescence spectra. For semiconductor nanocrystals[18], which are already
used in lighting[19,20], lasers[21,22], and displays[23], these optically
active excitons can lead to materials with brighter emission and enhanced
absorption. More generally, our results provide criteria for identifying other
semiconductors exhibiting bright excitons with potentially broad implications
for optoelectronic devices.Comment: 14 pages and 3 figures in the main text, Methods and extended data 16
pages which include 11 figures, and supporting information 28 page
Final results of magnetic monopole searches with the MACRO experiment
We present the final results obtained by the MACRO experiment in the search
for GUT magnetic monopoles in the penetrating cosmic radiation, for the range
. Several searches with all the MACRO sub-detectors
(i.e. scintillation counters, limited streamer tubes and nuclear track
detectors) were performed, both in stand alone and combined ways. No candidates
were detected and a 90% Confidence Level (C.L.) upper limit to the local
magnetic monopole flux was set at the level of cm
s sr. This result is the first experimental limit obtained in
direct searches which is well below the Parker bound in the whole range
in which GUT magnetic monopoles are expected.Comment: 12 pages, Latex, 9 figures and 2 Table
The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data
The cosmic ray primary composition in the energy range between 10**15 and
10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied
through the combined measurements of the EAS-TOP air shower array (2005 m
a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m
a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the
National Gran Sasso Laboratories. The used observables are the air shower size
(Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two
detectors are separated on average by 1200 m of rock, and located at a
respective zenith angle of about 30 degrees. The energy threshold at the
surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons
are produced in the early stages of the shower development and in a kinematic
region quite different from the one relevant for the usual Nmu-Ne studies. The
measurement leads to a primary composition becoming heavier at the knee of the
primary spectrum, the knee itself resulting from the steepening of the spectrum
of a primary light component (p, He). The result confirms the ones reported
from the observation of the low energy muons at the surface (typically in the
GeV energy range), showing that the conclusions do not depend on the production
region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET)
provides consistent composition results from data related to secondaries
produced in a rapidity region exceeding the central one. Such an evolution of
the composition in the knee region supports the "standard" galactic
acceleration/propagation models that imply rigidity dependent breaks of the
different components, and therefore breaks occurring at lower energies in the
spectra of the light nuclei.Comment: Submitted to Astroparticle Physic
Measurement of the residual energy of muons in the Gran Sasso underground Laboratories
The MACRO detector was located in the Hall B of the Gran Sasso underground
Laboratories under an average rock overburden of 3700 hg/cm^2. A transition
radiation detector composed of three identical modules, covering a total
horizontal area of 36 m^2, was installed inside the empty upper part of the
detector in order to measure the residual energy of muons. This paper presents
the measurement of the residual energy of single and double muons crossing the
apparatus. Our data show that double muons are more energetic than single ones.
This measurement is performed over a standard rock depth range from 3000 to
6500 hg/cm^2.Comment: 28 pages, 9 figure
Observation of the Shadowing of Cosmic Rays by the Moon using a Deep Underground Detector
Using data collected by the MACRO experiment during the years 1989-1996, we
show evidence for the shadow of the moon in the underground cosmic ray flux
with a significance of 3.6 sigma. This detection of the shadowing effect is the
first by an underground detector. A maximum-likelihood analysis is used to
determine that the angular resolution of the apparatus is 0.9+/-0.3 degrees.
These results demonstrate MACRO's capabilities as a muon telescope by
confirming its absolute pointing ability and quantifying its angular
resolution.Comment: 14 pages, 8 figures Submitted to Phys. Rev.
- …