77 research outputs found

    Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr2_{2}Cl Perovskite Nanocrystals

    Get PDF
    Fully-inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission and low spectral diffusion. Here, we report measurements of the coherent and incoherent exciton dynamics on the 100 fs to 10 ns timescale, determining dephasing and density decay rates in these NCs. The experiments are performed on CsPbBr2_{2}Cl NCs using transient resonant three-pulse four-wave mixing (FWM) in heterodyne detection at temperatures ranging from 5 K to 50 K. We found a low-temperature exciton dephasing time of 24.5±\pm1.0 ps, inferred from the decay of the photon-echo amplitude at 5 K, corresponding to a homogeneous linewidth (FWHM) of 54±\pm5 {\mu}eV. Furthermore, oscillations in the photon-echo signal on a picosecond timescale are observed and attributed to coherent coupling of the exciton to a quantized phonon mode with 3.45 meV energy

    Applicability of the kp method to modeling of InAs/GaSb short-period superlattices

    Get PDF
    We investigate the long-standing controversy surrounding modeling of the electronic spectra of InAs/GaSb short-period superlattices (SPSLs). Most commonly, such modeling for semiconductor heterostructures is based on the kp method. However, this method has so far failed to predict the band structure for type-II InAs/GaSb SPSLs. Instead, it has systematically overestimated the energy gap between the electron and heavy-hole minibands, which led to the suggestion that the kp method is inadequate for these heterostructures. Our results show that the physical origin of the discrepancy between modeling and experimental results may be the graded and asymmetric InAs/GaSb interface profile. We have performed band-structure modeling within the kp method using a realistic interface profile based on experimental observations. Our calculations show good agreement with experimental data, both from our own measurements and from the published literature. © 2009 The American Physical Society

    Optical filter based on two coupled PhC GaAs-membranes.

    Get PDF
    We demonstrate an ultracompact optical filter based on two coupled high-index contrast GaAs photonic crystal (PhC) membranes. The PhC membranes consist of a square lattice of air holes and behave as a Fabry-Perot cavity whose reflectivity and transmissivity depend on the air gap between the two membranes. The normal-incidence reflectance measurements and the numerical simulation of reflection spectra show a high sensitivity to the geometrical parameters, such as the distance between the slabs, whose control would make the device suitable for a new class of tunable optical filters

    Optical filter based on a coupled bilayer photonic crystal

    Get PDF
    We report on the fabrication of an ultra-compact optical filter based on photonic crystal free-standing membranes in bi-layer configuration. The basic heterostructure consists of two 376nm-thick GaAs-membranes sandwiched between air on a GaAs substrate. The air gap between the two membranes is 520nm thick. The normal-incidence reflectance measurements and the numerical simulation of reflection spectra show a high sensitivity to the holes diameter

    Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr₃ Nanocrystals and Their Superfluorescent Assemblies

    Get PDF
    Ligand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX₃ NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics—large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times—rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use. Thus far, no synthesis method fulfilling all these requirements has been reported. For instance, long-chain zwitterionic ligands impart the most durable surface coating, but at the expense of reduced size uniformity of the as-synthesized colloid. In this work, we demonstrate that size-selective precipitation of CsPbBr₃ NCs coated with a long-chain sulfobetaine ligand, namely, 3-(N,N-dimethyloctadecylammonio)-propanesulfonate, yields monodisperse and sizable fractions (>100 mg inorganic mass) with the mean NC size adjustable in the range between 3.5 and 16 nm and emission peak wavelength between 479 and 518 nm. We find that all NCs exhibit an oblate cuboidal shape with the aspect ratio of 1.2 × 1.2 × 1. We present a theoretical model (effective mass/k·p) that accounts for the anisotropic NC shape and describes the size dependence of the first and second excitonic transition in absorption spectra and explains room-temperature exciton lifetimes. We also show that uniform zwitterion-capped NCs readily form long-range ordered superlattices upon solvent evaporation. In comparison to more conventional ligand systems (oleic acid and oleylamine), supercrystals of zwitterion-capped NCs exhibit larger domain sizes and lower mosaicity. Both kinds of supercrystals exhibit superfluorescence at cryogenic temperatures—accelerated collective emission arising from the coherent coupling of the emitting dipoles

    The Influence of a Continuum Background on Carrier Relaxation in InAs/InGaAs Quantum Dot

    Get PDF
    We have investigated the ultra-fast carrier dynamics in Molecular Beam Epitaxy (MBE)-grown InAs/InGaAs/GaAs quantum dots (QDs) emitting at 1.3 μm by time resolved photoluminescence (TRPL) upconversion measurements with a time resolution of about 200 fs. Changing the detection energies in the spectral region from the energy of the quantum dots excitonic transition up to the barrier layer absorption edge, we have found that, under high excitation intensity, the intrinsic electronic states are populated mainly by carriers directly captured from the barrier
    • …
    corecore