37 research outputs found

    Stochastic fiber dynamics in a spatially semi-discrete setting

    Full text link
    We investigate a spatially discrete surrogate model for the dynamics of a slender, elastic, inextensible fiber in turbulent flows. Deduced from a continuous space-time beam model for which no solution theory is available, it consists of a high-dimensional second order stochastic differential equation in time with a nonlinear algebraic constraint and an associated Lagrange multiplier term. We establish a suitable framework for the rigorous formulation and analysis of the semi-discrete model and prove existence and uniqueness of a global strong solution. The proof is based on an explicit representation of the Lagrange multiplier and on the observation that the obtained explicit drift term in the equation satisfies a one-sided linear growth condition on the constraint manifold. The theoretical analysis is complemented by numerical studies concerning the time discretization of our model. The performance of implicit Euler-type methods can be improved when using the explicit representation of the Lagrange multiplier to compute refined initial estimates for the Newton method applied in each time step.Comment: 20 pages; typos removed, references adde

    Melt-Blowing of Viscoelastic Jets in Turbulent Airflows: Stochastic Modeling and Simulation

    Full text link
    In melt-blowing processes mico- and nanofibers are produced by the extrusion of polymeric jets into a directed, turbulent high-speed airflow. Up to now the physical mechanism for the drastic jet thinning is not fully understood, since in the existing literature the numerically computed/predicted fiber thickness differs several orders of magnitude from those experimentally measured. Recent works suggest that this discrepancy might arise from the neglect of the turbulent aerodynamic fluctuations in the simulations. In this paper we confirm this suggestion numerically. Due to the complexity of the process direct numerical simulations of the multiscale-multiphase problem are not possible. Hence, we develop a numerical framework for a growing fiber in turbulent air that makes the simulation of industrial setups feasible. For this purpose we employ an asymptotic viscoelastic model for the fiber. The turbulent effects are taken into account by a stochastic aerodynamic force model where the underlying velocity fluctuations are reconstructed from a kk-ϵ\epsilon turbulence description of the airflow. Our numerical results show the significance of the turbulence on the jet thinning and give fiber diameters of realistic order of magnitude

    Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets

    Full text link
    The spinning of slender viscous jets can be described asymptotically by one-dimensional models that consist of systems of partial and ordinary differential equations. Whereas the well-established string models possess only solutions for certain choices of parameters and set-ups, the more sophisticated rod model that can be considered as ϵ\epsilon-regularized string is generally applicable. But containing the slenderness ratio ϵ\epsilon explicitely in the equations complicates the numerical treatment. In this paper we present the first instationary simulations of a rod in a rotational spinning process for arbitrary parameter ranges with free and fixed jet end, for which the hitherto investigations longed. So we close an existing gap in literature. The numerics is based on a finite volume approach with mixed central, up- and down-winded differences, the time integration is performed by stiff accurate Radau methods

    Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations

    Full text link
    In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation. In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets -- that has been neglected so far -- are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k-epsilon turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible

    The WCET Tool Challenge 2011

    Get PDF
    Following the successful WCET Tool Challenges in 2006 and 2008, the third event in this series was organized in 2011, again with support from the ARTIST DESIGN Network of Excellence. Following the practice established in the previous Challenges, the WCET Tool Challenge 2011 (WCC'11) defined two kinds of problems to be solved by the Challenge participants with their tools, WCET problems, which ask for bounds on the execution time, and flow-analysis problems, which ask for bounds on the number of times certain parts of the code can be executed. The benchmarks to be used in WCC'11 were debie1, PapaBench, and an industrial-strength application from the automotive domain provided by Daimler AG. Two default execution platforms were suggested to the participants, the ARM7 as "simple target'' and the MPC5553/5554 as a "complex target,'' but participants were free to use other platforms as well. Ten tools participated in WCC'11: aiT, Astr\'ee, Bound-T, FORTAS, METAMOC, OTAWA, SWEET, TimeWeaver, TuBound and WCA

    A hierarchy of models for multilane vehicular traffic PART I: Modeling

    No full text
    In the present paper multilane models for vehicular traffic are considered. A microscopic multilane model based on reaction thresholds is developed. Based on this model an Enskog like kinetic model is developed. In particular, care is taken to incorporate the correlations between the vehicles. From the kinetic model a fluid dynamic model is derived. The macroscopic coefficients are deduced from the underlying kinetic model. Numerical simulations are presented for all three levels of description in [10]. Moreover, a comparison of the results is given there
    corecore