20 research outputs found

    Improved fed-batch processes with Wickerhamomyces anomalus WC 1501 for the production of D-arabitol from pure glycerol

    Get PDF
    D-Arabitol, a five-carbon sugar alcohol, represents a main target of microbial biorefineries aiming to valorize cheap substrates. The yeast Wickerhamomyces anomalus WC 1501 is known to produce arabitol in a glycerol-based nitrogen-limited medium and preliminary fed-batch processes with this yeast were reported to yield 18.0 g/L arabitol

    Analysis of physical and biogeochemical control mechanisms on summertime surface carbonate system variability in the western Ross Sea (Antarctica) using in situ and satellite data

    Get PDF
    In this study, carbonate system properties were measured in the western Ross Sea (Antarctica) over the 2005–2006 and 2011–2012 austral summers with the aim of analysing their sensitivity to physical and biogeochemical drivers. Daily Advanced Microwave Scanning Radiometer 2 (AMSR2) sea ice concentration maps, obtained prior to and during the samplings, were used to analyse the sea ice evolution throughout the experiment periods. Monthly means and 8-day composite chlorophyll concentration maps from the Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua satellite at 4-km resolution were used to investigate inter-annual and basin scale biological variability. Chlorophyll-a concentrations in surface waters estimated by MODIS satellite data contribute to descriptions of the variability of carbonate system properties in surface waters. Mean values of carbonate system properties were comparable across both investigated years; however, the 2012 data displayed larger variability. Sea ice melting also had a pivotal role in controlling the carbonate system chemistry of the mixed layer both directly through dilution processes and indirectly by favouring the development of phytoplankton blooms. This resulted in high pH and ΩAr, and in low CT, particularly in those areas where high chlorophyll concentration was shown by satellite maps

    New Insights into the Potential Roles of 3-Iodothyronamine (T1AM) and Newly Developed Thyronamine-Like TAAR1 Agonists in Neuroprotection

    Get PDF
    3-Iodothyronamine (T1AM) is an endogenous high-affinity ligand of the trace amine-associated receptor 1 (TAAR1), detected in mammals in many organs, including the brain. Recent evidence indicates that pharmacological TAAR1 activation may offer a novel therapeutic option for the treatment of a wide range of neuropsychiatric and metabolic disorders. To assess potential neuroprotection by TAAR1 agonists, in the present work, we initially investigated whether T1AM and its corresponding 3-methylbiaryl-methane analog SG-2 can improve learning and memory when systemically administered to mice at submicromolar doses, and whether these effects are modified under conditions of MAO inhibition by clorgyline. Our results revealed that when i.p. injected to mice, both T1AM and SG-2 produced memory-enhancing and hyperalgesic effects, while increasing ERK1/2 phosphorylation and expression of transcription factor c-fos. Notably, both compounds appeared to rely on the action of ubiquitous enzymes MAO to produce the corresponding oxidative metabolites that were then able to activate the histaminergic system. Since autophagy is key for neuronal plasticity, in a second line of experiments we explored whether T1AM and synthetic TAAR1 agonists SG1 and SG2 were able to induce autophagy in human glioblastoma cell lines (U-87MG). After treatment of U-87MG cells with 1 μM T1AM, SG-1, SG-2 transmission electron microscopy (TEM) and immunofluorescence (IF) showed a significant time-dependent increase of autophagy vacuoles and microtubule-associated protein 1 light chain 3 (LC3). Consistently, Western blot analysis revealed a significant increase of the LC3II/LC3I ratio, with T1AM and SG-1 being the most effective agents. A decreased level of the p62 protein was also observed after treatment with T1AM and SG-1, which confirms the efficacy of these compounds as autophagy inducers in U-87MG cells. In the process to dissect which pathway induces ATG, the effects of these compounds were evaluated on the PI3K-AKT-mTOR pathway. We found that 1 μM T1AM, SG-1 and SG-2 decreased pAKT/AKT ratio at 0.5 and 4 h after treatment, suggesting that autophagy is induced by inhibiting mTOR phosphorylation by PI3K-AKT-mTOR pathway. In conclusion, our study shows that T1AM and thyronamine-like derivatives SG-1 and SG-2 might represent valuable tools to therapeutically intervene with neurological disorder

    Brain Histamine Modulates the Antidepressant-Like Effect of the 3-Iodothyroacetic Acid (TA1)

    Get PDF
    3-iodothyroacetic acid (TA1), an end metabolite of thyroid hormone, has been shown to produce behavioral effects in mice that are dependent on brain histamine. We now aim to verify whether pharmacologically administered TA1 has brain bioavailability and is able to induce histamine-dependent antidepressant-like behaviors. TA1 brain, liver and plasma levels were measured by LC/MS-MS in male CD1 mice, sacrificed 15 min after receiving a high TA1 dose (330 μgkg–1). The hypothalamic mTOR/AKT/GSK-β cascade activation was evaluated in mice treated with 0.4, 1.32, 4 μgkg–1 TA1 by Western-blot. Mast cells were visualized by immuno-histochemistry in brain slices obtained from mice treated with 4 μgkg–1 TA1. Histamine release triggered by TA1 (20–1000 nM) was also evaluated in mouse peritoneal mast cells. After receiving TA1 (1.32, 4 or 11 μgkg–1; i.p.) CD1 male mice were subjected to the forced swim (FST) and the tail suspension tests (TST). Spontaneous locomotor and exploratory activities, motor incoordination, and anxiolytic or anxiogenic effects, were evaluated. Parallel behavioral tests were also carried out in mice that, prior to receiving TA1, were pre-treated with pyrilamine (10 mgkg–1; PYR) or zolantidine (5 mgkg–1; ZOL), histamine type 1 and type 2 receptor antagonists, respectively, or with p-chloro-phenylalanine (100 mgkg–1; PCPA), an inhibitor of serotonin synthesis. TA1 given i.p. to mice rapidly distributes in the brain, activates the hypothalamic mTOR/AKT and GSK-3β cascade and triggers mast cells degranulation. Furthermore, TA1 induces antidepressant effects and stimulates locomotion with a mechanism that appears to depend on the histaminergic system. TA1 antidepressant effect depends on brain histamine, thus highlighting a relationship between the immune system, brain inflammation and the thyroid

    Hit-to-Lead Optimization of Mouse Trace Amine Associated Receptor 1 (mTAAR1) Agonists with a Diphenylmethane-Scaffold: Design, Synthesis, and Biological Study

    Get PDF
    The trace amine-associated receptor 1 (TAAR1) is a G-protein-coupled receptors (GPCR) potently activated by a variety of molecules besides trace amines (TAs), including thyroid hormone-derivatives like 3-iodothyronamine (T1AM), catechol-O-methyltransferase products like 3-methoxytyramine, and amphetamine-related compounds. Accordingly, TAAR1 is considered a promising target for medicinal development. To gain more insights into TAAR1 physiological functions and validation of its therapeutic potential we recently developed a new class of thyronamine-like derivatives. Among them compound SG2 showed high affinity and potent agonist activity at mouse TAAR1. In the present work we describe design, the synthesis and SAR study of a new series of compounds (1-16) obtained by introducing specific structural changes at key points of our lead-compound SG2 skeleton. Five of the newly synthesized compounds displayed mTAAR1 agonist activity higher than both SG2 and T1AM. Selected diphenylmethane analogs, namely 1 and 2, showed potent functional activity in in vitro and in vivo models

    MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: a pooled-analysis from the M-SKIP project

    Get PDF
    Purpose: Melanoma represents an important public health problem, due to its high case-fatality rate. Identification of individuals at high risk would be of major interest to improve early diagnosis and ultimately survival. The aim of this study was to evaluate whether MC1R variants predicted melanoma risk independently of at-risk phenotypic characteristics. Materials and methods: Data were collected within an international collaboration – the M-SKIP project. The present pooled analysis included data on 3,830 single, primary, sporadic, cutaneous melanoma cases and 2,619 controls from seven previously published case–control studies. All the studies had information on MC1R gene variants by sequencing analysis and on hair color, skin phototype, and freckles, ie, the phenotypic characteristics used to define the red hair phenotype. Results: The presence of any MC1R variant was associated with melanoma risk independently of phenotypic characteristics (OR 1.60; 95% CI 1.36–1.88). Inclusion of MC1R variants in a risk prediction model increased melanoma predictive accuracy (area under the receiver-operating characteristic curve) by 0.7% over a base clinical model (P=0.002), and 24% of participants were better assessed (net reclassification index 95% CI 20%–30%). Subgroup analysis suggested a possibly stronger role of MC1R in melanoma prediction for participants without the red hair phenotype (net reclassification index: 28%) compared to paler skinned participants (15%). Conclusion: The authors suggest that measuring the MC1R genotype might result in a benefit for melanoma prediction. The results could be a valid starting point to guide the development of scientific protocols assessing melanoma risk prediction tools incorporating the MC1R genotype

    Anthropogenic Carbon in the Arctic Ocean: Perspectives From Different Transient Tracers

    No full text
    In this study we investigated the physical characteristics of the Atlantic layer in the Arctic Ocean (AO) and its role in the distribution and storage of anthropogenic carbon (Cant). The novelty of this work is to use the Transit Time Distribution method (TTD) with the radionuclides 129I and 236U and its comparison to the commonly applied gas tracers, CFC-12 and SF6. Overall, our examination of two distinct tracer pairs, along with the novel TTD method in comparison to a classical approach, revealed a notable agreement, highlighting the robustness of these Cant estimates. The TTD analysis based on radionuclides showed that whereas the Eurasian Basin has shorter transit times and is dominated by strong mixing conditions, the Amerasian Basin is characterized by longer transit times and a strong advective flow. Overall, the Cant concentrations obtained from radionuclides confirm that the distribution in the AO follows its circulation patterns, with higher concentrations in the Eurasian Basin (∼50 μmol kg−1) compared to the Amerasian one (∼36–42 μmol kg−1). An estimated partial inventory of 0.85 ± 0.17 and 1.0 ± 0.03 Pg C was assessed for 2015 from the novel application of TTD with radionuclides and gas tracers, respectively. Finally, we identified the saturation of gas tracers as a larger source of uncertainty for Cant estimation compared to the uncertainty associated to different radionuclides' input functions, thus remarking the importance of including non-saturation dependent tracers, such as radionuclides, as an additional tool to support Cant estimates in the AO.ISSN:0148-0227ISSN:2169-927

    An Old Disease Comes Back: Reporting 2 Cases of Neonatal Measles

    No full text
    We report two cases of neonatal measles (one congenital and one post natal infection) admitted to our neonatal intensive care unit and discuss the management. This report intend to keep alert against measles and point out the risk for susceptible pregnant women and their offspring in countries with reduction of coverage from anti measles vaccine

    Radiomic Features Applied to Contrast Enhancement Spectral Mammography: Possibility to Predict Breast Cancer Molecular Subtypes in a Non-Invasive Manner

    No full text
    We aimed to investigate the association between the radiomic features of contrast-enhanced spectral mammography (CESM) images and a specific receptor pattern of breast neoplasms. In this single-center retrospective study, we selected patients with neoplastic breast lesions who underwent CESM before a biopsy and surgical assessment between January 2013 and February 2022. Radiomic analysis was performed on regions of interest selected from recombined CESM images. The association between the features and each evaluated endpoint (ER, PR, Ki-67, HER2+, triple negative, G2–G3 expressions) was investigated through univariate logistic regression. Among the significant and highly correlated radiomic features, we selected only the one most associated with the endpoint. From a group of 321 patients, we enrolled 205 malignant breast lesions. The median age at the exam was 50 years (interquartile range (IQR) 45–58). NGLDM_Contrast was the only feature that was positively associated with both ER and PR expression (p-values = 0.01). NGLDM_Coarseness was negatively associated with Ki-67 expression (p-value = 0.02). Five features SHAPE Volume(mL), SHAPE_Volume(vx), GLRLM_RLNU, NGLDM_Busyness and GLZLM_GLNU were all positively and significantly associated with HER2+; however, all of them were highly correlated. Radiomic features of CESM images could be helpful to predict particular molecular subtypes before a biopsy
    corecore