33 research outputs found

    YAP1 Recruits c-Abl to Protect Angiomotin-Like 1 from Nedd4-Mediated Degradation

    Get PDF
    Tissue development and organ growth require constant remodeling of cell-cell contacts formed between epithelial cells. The Hippo signaling cascade curtails organ growth by excluding the transcriptional co-activator Yes Associated Protein 1 (YAP1) from the nucleus. Angiomotin family members recruit YAP1 to tight junctions [1], but whether YAP1 plays a specific role outside of the nucleus is currently unknown.The present study demonstrates that the E3 ubiquitin ligase Nedd4.2 targets Angiomotin-like 1 (AMOTL1), a family member that promotes the formation of epithelial tight junctions, for ubiquitin-dependent degradation. Unexpectedly, YAP1 antagonizes the function of Nedd4.2, and protects AMOTL1 against Nedd4.2-mediated degradation. YAP1 recruits c-Abl, a tyrosine kinase that binds and phosphorylates Nedd4.2 on tyrosine residues, thereby modifying its ubiquitin-ligase activity.Our results uncover a novel function for cytoplasmic YAP1. YAP1 recruits c-Abl to protect AMOTL1 against Nedd4.2-mediated degradation. Thus, YAP1, excluded from the nucleus, contributes to the maintenance of tight junctions

    Respiratory distress and perinatal lethality in Nedd4-2-deficient mice

    Get PDF
    The epithelial sodium channel (ENaC) is essential for sodium homoeostasis in many epithelia. ENaC activity is required for lung fluid clearance in newborn animals and for maintenance of blood volume and blood pressure in adults. In vitro studies show that the ubiquitin ligase Nedd4-2 ubiquitinates ENaC to regulate its cell surface expression. Here we show that knockout of Nedd4-2 in mice leads to increased ENaC expression and activity in embryonic lung. This increased ENaC activity is the likely reason for premature fetal lung fluid clearance in Nedd4-2−/− animals, resulting in a failure to inflate lungs and perinatal lethality. A small percentage of Nedd4-2−/− animals survive up to 22 days, and these animals also show increased ENaC expression and develop lethal sterile inflammation of the lung. Thus, we provide critical in vivo evidence that Nedd4-2 is essential for correct regulation of ENaC expression, fetal and postnatal lung function and animal survival

    Reproducible, Ultra High-Throughput Formation of Multicellular Organization from Single Cell Suspension-Derived Human Embryonic Stem Cell Aggregates

    Get PDF
    Background: Human embryonic stem cells (hESC) should enable novel insights into early human development and provide a renewable source of cells for regenerative medicine. However, because the three-dimensional hESC aggregates [embryoid bodies (hEB)] typically employed to reveal hESC developmental potential are heterogeneous and exhibit disorganized differentiation, progress in hESC technology development has been hindered. Methodology/Principal Findings: Using a centrifugal forced-aggregation strategy in combination with a novel centrifugalextraction approach as a foundation, we demonstrated that hESC input composition and inductive environment could be manipulated to form large numbers of well-defined aggregates exhibiting multi-lineage differentiation and substantially improved self-organization from single-cell suspensions. These aggregates exhibited coordinated bi-domain structures including contiguous regions of extraembryonic endoderm- and epiblast-like tissue. A silicon wafer-based microfabrication technology was used to generate surfaces that permit the production of hundreds to thousands of hEB per cm 2. Conclusions/Significance: The mechanisms of early human embryogenesis are poorly understood. We report an ultra high throughput (UHTP) approach for generating spatially and temporally synchronised hEB. Aggregates generated in this manner exhibited aspects of peri-implantation tissue-level morphogenesis. These results should advance fundamental studies into early human developmental processes, enable high-throughput screening strategies to identify conditions tha

    Effect of general loss-cone distribution function on EIC waves in multi- component plasma-particle aspect approach

    Get PDF
    71-82Electrostatic ion-cyclotron waves are investigated in multi-ion plasma (H+, He+ and O+) using particle aspect analysis. Variations with perpendicular wave number of wave frequency, resonant energy and growth rate with general loss-cone distribution function are studied. The whole plasma is considered to consist of resonant and non-resonant particles. The resonant particles participate in energy exchange while the non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate obliquely to the static magnetic field. It is found that the frequency for the lighter ions increases then decreases by increasing the perpendicular wave number while the frequency for the heavier ions is constant. Perpendicular wave number decreases the growth rate of the wave and also decreases perpendicular resonant energy and increases parallel resonant energy. The effect of general loss-cone distribution is also discussed with multi-component plasma which increases the wave frequency, growth rate and parallel resonant energy while decreases the perpendicular resonant energy. The study may explain the EIC waves observed in auroral acceleration region. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region around the earth’s magnetosphere
    corecore