50 research outputs found

    Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease

    Get PDF
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic associated with substantial morbidity and mortality worldwide, with particular risk for severe disease and mortality in the elderly population. SARS-CoV-2 infection is driven by a pathological hyperinflammatory response which results in a dysregulated immune response. Current advancements in aging research indicates that aging pathways have fundamental roles in dictating healthspan in addition to lifespan. Our review discusses the aging immune system and highlights that senescence and aging together, play a central role in COVID-19 pathogenesis. In our review, we primarily focus on the immune system response to SARS-CoV-2 infection, the interconnection between severe COVID-19, immunosenescence, aging, vaccination, and the emerging problem of Long-COVID. We hope to highlight the importance of identifying specific senescent endotypes (or “sendotypes”), which can used as determinants of COVID-19 severity and mortality. Indeed, identified sendotypes could be therapeutically exploited for therapeutic intervention. We highlight that senolytics, which eliminate senescent cells, can target aging-associated pathways and therefore are proving attractive as potential therapeutic options to alleviate symptoms, prevent severe infection, and reduce mortality burden in COVID-19 and thus ultimately enhance healthspan

    Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity

    Get PDF
    The HIRA histone chaperone complex deposits histone H3.3 into nucleosomes in a DNA replication- and sequence-independent manner. As herpesvirus genomes enter the nucleus as naked DNA, we asked whether the HIRA chaperone complex affects herpesvirus infection. After infection of primary cells with HSV or CMV, or transient transfection with naked plasmid DNA, HIRA re-localizes to PML bodies, sites of cellular anti-viral activity. HIRA co-localizes with viral genomes, binds to incoming viral and plasmid DNAs and deposits histone H3.3 onto these. Anti-viral interferons (IFN) specifically induce HIRA/PML co-localization at PML nuclear bodies and HIRA recruitment to IFN target genes, although HIRA is not required for IFN-inducible expression of these genes. HIRA is, however, required for suppression of viral gene expression, virus replication and lytic infection and restricts murine CMV replication in vivo. We propose that the HIRA chaperone complex represses incoming naked viral DNAs through chromatinization as part of intrinsic cellular immunity

    Immuno-informatics analysis predicts B and T cell consensus epitopes for designing peptide vaccine against SARS-CoV-2 with 99.82% global population coverage.

    Get PDF
    The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines

    Lamin B1 Depletion in Senescent Cells Triggers Large-Scale Changes in Gene Expression and the Chromatin Landscape

    Get PDF
    Senescence is a stable proliferation arrest, associated with an altered secretory pathway, thought to promote tumor suppression and tissue aging. While chromatin regulation and lamin B1 down-regulation have been implicated as senescence effectors, functional interactions between them are poorly understood. We compared genome-wide Lys4 trimethylation on histone H3 (H3K4me3) and H3K27me3 distributions between proliferating and senescent human cells and found dramatic differences in senescence, including large-scale domains of H3K4me3- and H3K27me3-enriched “mesas” and H3K27me3-depleted “canyons.” Mesas form at lamin B1-associated domains (LADs) in replicative senescence and oncogene-induced senescence and overlap DNA hypomethylation regions in cancer, suggesting that pre-malignant senescent chromatin changes foreshadow epigenetic cancer changes. Hutchinson-Gilford progeria syndrome fibroblasts (mutant lamin A) also show evidence of H3K4me3 mesas, suggesting a link between premature chromatin changes and accelerated cell senescence. Canyons mostly form between LADs and are enriched in genes and enhancers. H3K27me3 loss is correlated with up-regulation of key senescence genes, indicating a link between global chromatin changes and local gene expression regulation. Lamin B1 reduction in proliferating cells triggers senescence and formation of mesas and canyons. Our data illustrate profound chromatin reorganization during senescence and suggest that lamin B1 down-regulation in senescence is a key trigger of global and local chromatin changes that impact gene expression, aging, and cancer

    Mll1 is essential for the senescenceassociated secretory phenotype

    Get PDF
    Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces “SASP-like” inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression

    Genomic, Proteomic and Phenotypic Biomarkers of COVID-19 Severity::Protocol for a Retrospective Observational Study

    Get PDF
    Background:Background - Health organisations and countries around the world have found it difficult to control the spread of the coronavirus disease 2019. To minimise the impact on the NHS and improve patient care, there is a drive for rapid tests capable of detecting individuals who are at high risk of contracting severe COVID-19. Early work focused on single omic approaches, highlighting a limited amount of information.Objective:Objective - The Covid Response Study (COVRES, NCT05548829) aims to carry out an integrated multi-omic analysis of factors contributing to host susceptibility to SARS-CoV-2 among a patient cohort of 1000 people from the geographically isolated island of Ireland.Methods:Methods - The protocol below describes the study to be carried out in Northern Ireland (NI-COVRES) by Ulster University, the Republic of Ireland component will be described separately. All participants (n=519) were recruited from the Western Health and Social Care Trust, Northern Ireland, forty patients are also being followed up at 1, 3, 6 and 12 months to assess the longitudinal impact of infection on symptoms, general health, and immune response, this is ongoing. Data will be sourced from whole blood, saliva samples, and clinical data from the Northern Ireland Electronic Care Record, general health questionnaire, and the GHQ12 mental health survey. Saliva and blood samples were processed for DNA and RNA prior to whole genomic sequencing, RNA sequencing, DNA methylation, microbiome, 16S, and proteomic analysis. Multi-omics data will be combined with clinical data to produce sensitive and specific prognostic models of severity risk.Results:Results - An initial profile of the cohort has been completed: n=249 hospitalised and n=270 non-hospitalised patients were recruited, 64% were female, the mean age was 45 years. High levels of comorbidity were evident in the hospitalised cohort, with cardiovascular disease and metabolic and respiratory disorders (P<0.001) being the most significant.Conclusions:Conclusion – This study will provide a comprehensive opportunity to study multi-omic mechanisms of COVID-19 severity in re-contactable participants. Clinical Trial: Trial Registration - The trial has been registered as an observational study on clinicaltrials.gov as NCT05548829. An outline of the trial protocol is included; SPIRIT checklist (Supplementary Figure 1)

    The Interdependency and Co-Regulation of the Vitamin D and Cholesterol Metabolism

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-28, pub-electronic 2021-08-06Publication status: PublishedFunder: Harold Hyam Wingate Foundation; Grant(s): 16412Vitamin D and cholesterol metabolism overlap significantly in the pathways that contribute to their biosynthesis. However, our understanding of their independent and co-regulation is limited. Cardiovascular disease is the leading cause of death globally and atherosclerosis, the pathology associated with elevated cholesterol, is the leading cause of cardiovascular disease. It is therefore important to understand vitamin D metabolism as a contributory factor. From the literature, we compile evidence of how these systems interact, relating the understanding of the molecular mechanisms involved to the results from observational studies. We also present the first systems biology pathway map of the joint cholesterol and vitamin D metabolisms made available using the Systems Biology Graphical Notation (SBGN) Markup Language (SBGNML). It is shown that the relationship between vitamin D supplementation, total cholesterol, and LDL-C status, and between latitude, vitamin D, and cholesterol status are consistent with our knowledge of molecular mechanisms. We also highlight the results that cannot be explained with our current knowledge of molecular mechanisms: (i) vitamin D supplementation mitigates the side-effects of statin therapy; (ii) statin therapy does not impact upon vitamin D status; and critically (iii) vitamin D supplementation does not improve cardiovascular outcomes, despite improving cardiovascular risk factors. For (iii), we present a hypothesis, based on observations in the literature, that describes how vitamin D regulates the balance between cellular and plasma cholesterol. Answering these questions will create significant opportunities for advancement in our understanding of cardiovascular health

    Immuno-informatics analysis predicts B and T cell consensus epitopes for designing peptide vaccine against SARS-CoV-2 with 99.82% global population coverage.

    Get PDF
    The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines

    Analysis of SARS-CoV-2 antibody seroprevalence in Northern Ireland during 2020–2021

    Get PDF
    BackgroundWith the spread of SARS-CoV-2 impacting upon public health directly and socioeconomically, further information was required to inform policy decisions designed to limit virus spread during the pandemic. This study sought to contribute to serosurveillance work within Northern Ireland to track SARS-CoV-2 progression and guide health strategy.MethodsSera/plasma samples from clinical biochemistry laboratories were analysed for anti-SARS-CoV-2 antibodies. Samples were assessed using an Elecsys anti-SARS-CoV-2 or anti-SARS-CoV-2 S ECLIA (Roche) on an automated cobas e 801 analyser. Samples were also assessed via an anti-SARS-CoV-2 ELISA (Euroimmun). A subset of samples assessed via the Elecsys anti-SARS-CoV-2 ECLIA were subsequently analysed in an ACE2 pseudoneutralisation assay using a V-PLEX SARS-CoV-2 Panel 7 for IgG and ACE2 (Meso Scale Diagnostics).ResultsAcross three testing rounds (June–July 2020, November–December 2020 and June–July 2021 (rounds 1–3 respectively)), 4844 residual sera/plasma specimens were assayed for anti-SARS-CoV-2 antibodies. Seropositivity rates increased across the study, peaking at 11.6 % (95 % CI 10.4%–13.0 %) during round 3. Varying trends in SARS-CoV-2 seropositivity were noted based on demographic factors. For instance, highest rates of seropositivity shifted from older to younger demographics across the study period. In round 3, Alpha (B.1.1.7) variant neutralising antibodies were most frequently detected across age groups, with median concentration of anti-spike protein antibodies elevated in 50–69 year olds and anti-S1 RBD antibodies elevated in 70+ year olds, relative to other age groups.ConclusionsWith seropositivity rates of <15 % across the assessment period, it can be concluded that the significant proportion of the Northern Ireland population had not yet naturally contracted the virus by mid-2021
    corecore