
Priyank Shukla is a Lecturer in Stratified Medicine (Bioinformatics) at the Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute,
Ulster University, UK.
Preeti Pandey is a Postdoctoral Researcher at the Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical
University of South Carolina, Charleston, USA.
Bodhayan Prasad is a PhD Researcher at the Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, UK.
Tony Robinson is a PhD Researcher at the School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, UK.
Rituraj Purohit is a Principal Scientist at the Structural Bioinformatics Lab, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology
(CSIR-IHBT), Palampur, Himachal Pradesh, India.
Leon G D’Cruz is a Research Associate at the Respiratory Medicine Department and Clinical Trials Unit, Queen Alexandra Hospital, Portsmouth, UK.
Murtaza M Tambuwala is a Lecturer in Pharmacy at the School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine Campus, UK.
Ankur Mutreja is a Group Leader at the Department of Medicine, University of Cambridge, Cambridge, UK.
Jim Harkin is a Professor at the School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, UK.
Taranjit Singh Rai is a Lecturer in Cellular Aging at the Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University,
UK.
Elaine K Murray is a Lecturer in Stratified Medicine (Mental Health) at the Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research
Institute, Ulster University, UK.
David S Gibson is a Senior Lecturer in Inflammatory Disease at the Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster
University, UK.
Anthony J Bjourson is a Professor of Genomics at the Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University,
UK.
Received: July 11, 2021. Revised: October 3, 2021. Accepted: October 30, 2021
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/license
s/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2022, 23, 1–15

https://doi.org/10.1093/bib/bbab496

Case Study

Immuno-informatics analysis predicts B and
T cell consensus epitopes for designing
peptide vaccine against SARS-CoV-2 with
99.82% global population coverage
Priyank Shukla , Preeti Pandey, Bodhayan Prasad , Tony Robinson, Rituraj Purohit, Leon G. D’Cruz, Murtaza M. Tambuwala ,

Ankur Mutreja, Jim Harkin, Taranjit Singh Rai, Elaine K. Murray, David S. Gibson and Anthony J. Bjourson

Corresponding author. Priyank Shukla, Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building,
Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, UK. Tel.: +442871675690; E-mail: p.shukla@ulster.ac.uk

Abstract

The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number
of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials
at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and
evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools
and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein.
This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune
responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global
population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for
SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore,
we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular
docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics
Poisson–Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline
described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-
CoV-2 vaccines.
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Introduction
The rise of the current pandemic of Severe Acute Respi-
ratory Syndrome Coronavirus 2 (SARS-CoV-2) started in
December 2019 with the reports of severe pneumonia

cases of unknown aetiology from the city of Wuhan
by the Chinese Center for Disease Control (China CDC)
[1]. Coronaviruses (CoV) are enveloped positive-stranded
RNA-viruses [2] belonging to a family of zoonotic viruses
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Figure 1. Flowchart of immuno-informatics analysis pipeline viz. Peptide-based Vaccine Prediction Pipeline (PVPredPip). Oval shapes represent start/stop
of the pipeline. Parallelogram boxes represent input/output. Rectangular boxes represent processing steps. Servers/tools/software and databases used
are mentioned in parenthesis.

[3] which infect a variety of mammals including bats and
humans [4]. They are implicated in previous outbreaks
such as, Middle East Respiratory Syndrome (MERS-CoV)
[5], Severe Acute Respiratory Syndrome (SARS-CoV) [4]
and most recently SARS-CoV-2 [6], which has created
an urgent need to develop diagnostics, therapeutics and
vaccines against SARS-CoV-2. Although a few vaccines
have been rolled-out in some major developed and
developing countries, a number of vaccine candidates
are still under clinical trials at various laboratories across
the world in non-profit, public, academic, multinational
pharmaceutical companies and other industries [7].
Considering the intrinsic nature of viruses in mutating
and evolving over time (https://www.cdc.gov/coronavi
rus/2019-ncov/transmission/variant.html), persistent
and timely efforts are needed to develop better vaccine
candidates [8].

Recent efforts towards utilizing epitope prediction for
designing a peptide-based vaccine against SARS-CoV-2
are either focused on only T-cell epitopes [9] or on HLA
allele frequencies amongst specific populations such as,
Japan [9] or China [10]. Some have focused on virus E
protein [3], whereas others have investigated homology
between SARS-CoV and SARS-CoV-2 to derive both com-
mon and unique epitopes [1].

In this study, we have deployed various immuno-
informatics tools and bioinformatics databases to
predict B-cell and T-cell consensus epitopes as peptide-
based vaccine candidates for SARS-CoV-2, which show
maximum population coverage across all continents
and thus can be effective globally. Recognition of

the antigenic epitope was carried out strategically in
such a way that the selected epitopes are capable of
generating both antibody and cell-mediated immune
responses. The designed epitopes are also predicted to
be non-allergenic and show no autoimmune response in
humans. We further went on computationally validating
the binding of constituent T-cell epitopes of the best
consensus epitope with their corresponding HLA proteins
using molecular docking and molecular dynamics
(MD) simulation experiments, followed by binding free
energy calculations with molecular mechanics Poisson–
Boltzmann surface area (MM-PBSA), essential dynamics
analysis and free energy landscape (FEL) analysis.

Materials and methods
A summary flowchart of the immuno-informatics
analysis pipeline viz. Peptide-based Vaccine Prediction
Pipeline (PVPredPip) is presented in Figure 1 and each
step of the pipeline is described in detail in Supplemen-
tary File 1 (see Supplementary Data available online
at http://bib.oxfordjournals.org/) with all the tools,
software, servers, databases and specific parameters
used for each of them during the analysis. All the in-
house scripts used in this pipeline have been deposited
in the following public repository https://github.com/
ShuklaLab/PVPredPip.

Results
We have developed a robust immuno-informatics
pipeline PVPredPip (Figure 1) for B-cell and T-cell

https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant.html
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consensus epitope prediction for SARS-CoV-2 by metic-
ulously choosing and deploying various tools and
bioinformatics databases. The results from each step of
this pipeline are presented in the following sub-sections.

Antigenicity prediction of spike glycoprotein of
SARS-CoV-2
The amino acid sequence of the spike glycoprotein
of SARS-CoV-2, which was retrieved from NCBI Pro-
tein database (GenBank ID: QIC53213.1, NCBI Refer-
ence Sequence: YP_009724390.1) was 1273 amino acid
residues long and was predicted to be antigenic by
VaxiJen 2.0 [11]. The predicted antigenic nature of the
retrieved spike glycoprotein sequence of SARS-CoV-2
endorses it to be a potential candidate to find B-cell and
T-cell epitopes for designing a peptide-based vaccine.

Identification of B-cell epitopes
The B-cell epitopes predicted by the two servers ABCPred
[12] and BcePred [13] produced variable results. Hence,
a consensus of their results was developed with IEDB’s
Epitope Cluster Analysis tool [14], which yielded a total
of twenty-four candidate B-cell epitope sequences (Sup-
plementary Table 1, see Supplementary Data available
online at http://bib.oxfordjournals.org/). These epitopes
ranged in size from 14 to 35 residues and were dis-
tributed throughout all the domains of the spike gly-
coprotein, suggesting that further downstream analysis
was required to refine potential B-cell epitope candi-
dates.

Identification of T-cell epitopes
We chose a panel of the 27 most common HLA MHC-I
binding A and B alleles and the 26 most common HLA
MHC-II binding (DP, DQ and DR; A and B) alleles to ensure
that predicted epitopes cover the majority of the global
population. We also fixed the MHC-I epitopes length to
9-mer, as this length is suggested to be most preferable
for binding majority of the ligands presented by HLA
alleles [15]. In the case of MHC-II epitopes, length was
fixed to 15-mer as recommended by the TepiTool. We
further went on first refining the list of MHC-I epitopes
by IEDB’s Class-I Immunogenicity predictor [16] which
groups residues based on their physico-chemical proper-
ties and uses them as a feature for immunogenicity pre-
diction. Following this, we built the consensus of MHC-I
and MHC-II overlapping epitope sequences with IEDB’s
Epitope Cluster Analysis tool [14], which yielded a total
of 51 candidate T-cell epitope sequences (Supplemen-
tary Table 2, see Supplementary Data available online at
http://bib.oxfordjournals.org/). These epitopes ranged in
size from 15 to 27 residues and were distributed through-
out all the domains of the spike glycoprotein, suggesting
that further downstream analysis was required to refine
the list of potential T-cell epitope candidates.

Final B-cell and T-cell consensus epitopes
Using the IEDB’s Epitope Cluster Analysis tool [14],
we identified 11 clusters, which were based on over-
lapping sequences of B-cell and T-cell epitopes. The
rationale behind building these consensus sequences
was to ensure that the selected epitopes are capable
of generating both humoral and cytotoxic immune
response. We went on to further rigorously refine
these 11 epitopes by conducting a battery of tests: (i)
antigenicity test with VaxiJen 2.0 [11], (ii) allergenicity
test with AllerTOP 2.0 [17] and (iii) auto-immunity test
with Protein Information Resource‘s peptide search
service [18], which finally yielded four B-cell and T-cell
consensus epitopes (Table 1). These epitopes range in
size from 18 to 39 residues and are present in the S1
region of the SARS-CoV-2 spike glycoprotein (Figure 2).
More specifically, epitope number 1 is present in the C-
terminal domain 2 (CTD2) and epitopes numbered 2–4
are present in the N-terminal domain (NTD) (Figure 2).

Population coverage of final B-cell and T-cell
consensus epitopes
Global population coverage for the set of final four epi-
topes was computed to be 99.82% by IEDB’s Population
Coverage tool (Table 2). This computation is based on
genotypic frequencies of MHC-I and MHC-II HLA bind-
ing alleles of each epitope presented in Table 1. When
analysed individually, epitope number 2 in particular
showed high coverage for all the continent-area-specific
populations including overall world population. Epitope
number 1 on the other hand had not only the least
overall world population coverage of only 19.83% but
also very low coverage for each continent-area-specific
populations. All four epitopes have less coverage ranging
between 0.00 and 59.15% in the South African population
(Table 2), which has also been previously demonstrated
for other vaccines [20], and more recently for SARS-CoV-2
vaccines [21–24]. Epitope number 3 showed a high degree
of variability in its population coverage ranging between
17.10 and 77.25% across all the continents.

Conservation of final B-cell and T-cell consensus
epitopes
With this analysis, we sought to determine if the final
four epitopes are unique for SARS-CoV-2 or can also be
used against SARS-CoV. We also wanted to confirm if
they are conserved across all SARS spike glycoprotein
sequences which have been isolated from different host
species (viz. human, bats, civet and bovine). A high degree
of protein sequence similarity has been found between
SARS-CoV-2 and SARS-CoV, but not between SARS-CoV-2
and MERS [1]. Therefore, we excluded MERS spike glyco-
protein sequences from this analysis. We performed Mul-
tiple Sequence Alignment (MSA) of 144 non-redundant
SARS spike glycoprotein sequences with EMBL-EBI’s
Clustal Omega server. These sequences were annotated
in UniProt database as either belonging to SARS-CoV or
SARS-CoV-2 and originated from either human, bat, civet

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
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Table 1. Final four B-cell and T-cell consensus epitope sequences. Their start and end residue positions on the Spike Glycoprotein
sequence of SARS Coronavirus-2 (GenBank ID: QIC53213.1, NCBI Reference Sequence: YP_009724390.1), length and the corresponding
HLA binding alleles of T-cell epitopes are presented here. For more details of constituent B-cell and T-cell epitopes and the specific HLA
binding alleles of each constituent T-cell epitopes, please see Supplementary Table 3, see Supplementary Data available online at
http://bib.oxfordjournals.org/

Epitope
No.

B-cell and T-Cell consensus epitope sequence Residue
positions

Length HLA Class-I binding
alleles of constituent
T-cell epitopes

HLA Class-II binding
alleles of constituent
T-cell epitopes

1 PVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEH 621–655 35 HLA-A∗02:06 HLA-DRB1∗07:01
2 LHRSYLTPGDSSSGWTAGAAAYYVGYLQPR 244–273 30 HLA-A∗01:01,

HLA-A∗26:01,
HLA-A∗30:02,
HLA-A∗68:02

HLA-DPA1∗01:03,
HLA-DPB1∗02:01,
HLA-DQA1∗01:01,
HLA-DQA1∗01:02,
HLA-DQA1∗04:01,
HLA-DQA1∗05:01,
HLA-DQB1∗03:01,
HLA-DQB1∗04:02,
HLA-DQB1∗05:01,
HLA-DQB1∗06:02,
HLA-DRB1∗09:01

3 VLPFNDGVYFASTEKSNI 83–100 18 HLA-A∗03:01,
HLA-A∗11:01

HLA-DPA1∗02:01,
HLA-DPB1∗05:01,
HLA-DRB1∗04:01

4
WMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR

152–190 39 HLA-A∗01:01,
HLA-A∗30:02,
HLA-B∗15:01,
HLA-B∗35:01

HLA-DPA1∗01:03,
HLA-DPB1∗02:01,
HLA-DRB1∗04:05,
HLA-DRB1∗08:02,
HLA-DRB1∗09:01,
HLA-DRB1∗15:01,
HLA-DRB3∗02:02

or bovine species. The MSA results were further analysed
by ConSurf which graded most of the residues as variable
regions, i.e. least conserved (Table 3). Interestingly,
epitope number 2, which showed maximum population
coverage (Table 2), showed least conservation with
IEDB’s Population Coverage tool, such that 79% of 144
non-redundant sequences of SARS spike glycoprotein
showed less than 30% identify with the epitope sequence
(Table 3). Epitope number 4, which was second-best in
terms of population coverage (Table 2), also showed
poor conservation, where 94% of 144 non-redundant
sequences of SARS spike glycoprotein showed less
than 40% identity with the epitope sequence (Table 3).
Epitopes numbered 1 and 3 were better conserved with
88–98% of 144 non-redundant sequences of SARS spike
glycoprotein showing 70% identity with the two epitope
sequences (Table 3), but their population coverage was
less than the other two epitopes (Table 2). These results
infer that the four epitopes, particularly epitopes 2 and 4
with maximum human population coverage, are unique
for SARS-CoV-2 found in humans. These results also con-
firm that even though SARS-CoV-2 and SARS-CoV protein
sequences are similar, the amino acid sequence of
spike glycoprotein differs substantially when analysing
different strains based on host origin, which warrants
host-origin-specific vaccine development.

Molecular docking of potential T-cell epitopes
For a multi-epitope vaccine to induce protective immu-
nity, it should satisfy at least three criteria: (i) the
peptides must match with the epitope naturally pre-
sented to the immune cells during infection, (ii) elicit

an adequate immune response and (iii) must have an
optimal population coverage. In our earlier analysis, we
found epitope number 2 to satisfy all these three criteria.
But, since the HLA molecules are extremely polymorphic
in nature (more than 600 allelic forms, encoding diverse
amino acid sequence), with the sequence diversity
mostly concentrated in the peptide binding region
(antigen binding groove between the two helices of
MHC molecules), the binding affinity of the epitope
towards different HLA molecules may differ. Therefore, to
understand the binding affinity of the predicted epitope
towards different HLA molecules and subsequent
interaction between them, we performed molecular
docking studies. The docking scores of five constituent T-
cell epitopes numbered 2.2.1–2.2.5 of consensus epitope
number 2 (Supplementary Table 3, see Supplementary
Data available online at http://bib.oxfordjournals.org/)
towards different HLA molecules are listed in Table 4.
The docking results indicate that these five constituent
T-cell epitopes possess good binding affinity towards
different HLA molecules which is in agreement with
our earlier results. The binding affinity for the MHC-I
molecules lies in the range of −97.67 to −84.02 kcal/mol,
while for MHC-II molecules, it is in the range of −136.36 to
−77.86 kcal/mol. In both cases, the major contributions
are coming from the van der Waals interactions as
hydrophobic residues dominate in the binding pocket
as well as in epitopes (Table 4). The best binding
affinity for MHC-I molecules was observed for epitope
number 2.2.2 against HLA-A∗30:02 (−97.67 kcal/mol) and
epitope number 2.2.3 against HLA-A∗01:01 (−94.93 kcal/
mol) and HLA-A∗26:01 (−90.97 kcal/mol). And, for the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
http://bib.oxfordjournals.org/
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Figure 2. Visualization of final four epitopes in SARS-CoV-2 spike protein (PDB ID: 6XR8). Regions of final four B-cell and T-cell consensus epitope
sequences are highlighted in both (A) monomer and (B) trimer of the spike protein, wherein chain-A is highlighted in green, chain-B in blue and chain-C
in orange. Epitope 1, highlighted in yellow, is present in C-terminal domain 2 (CTD2) and epitopes 2–4, highlighted in red, magenta and cyan, respectively,
are in N-terminal domain (NTD). (C) Sequences of final four B-cell and T-cell consensus epitope. RBD = receptor binding domain, CTD1 = C-terminal
domain 1, S1/S2 = S1/S2 cleavage site, CH = central helix region, CD = connector domain, HR1 = heptad repeat 1, FP = fusion peptide and FPPR = fusion
peptide proximal region, are indicated in Figure 2A. SARS-CoV-2 spike protein’s domain information has been derived from Figure 1A of Cai et al. study
[2]. 3D-rendering was performed using UCSF Chimera [19].

MHC-II molecules, epitope numbers 2.2.4 and 2.2.1
showed a promising binding affinity towards HLA-
DPA1∗01:03/HLA-DPB1∗02:01, HLA-DQA1∗05:01/HLA-
DQB1∗03:01 and HLA-DQA1∗04:01/HLA-DQB1∗04:02,
respectively. It is also to be noted here that the two epi-
topes, i.e. 2.2.2 and 2.2.3, have eight residues in common
and essentially differ by a single residue window shift
leading to a difference of one residue flanking on each
side (Supplementary Table 3, see Supplementary Data
available online at http://bib.oxfordjournals.org/), but
they possess a significantly different affinity towards
HLA-A∗30:02 (dock score differs by ∼10 kcal/mol). Quite
similar is the case for epitope numbers 2.2.1 and 2.2.4

against HLA-DQA1∗05:01/HLA-DQB1∗03:01 (MHC-II).
These results clearly indicate that few residues flanking
the common motif in a novel designed peptide can
significantly influence the overall binding preference of
a peptide. Interestingly, we also observed that the same
epitope can have a very different binding affinity towards
different HLA molecules. For example, epitope number
2.2.4 possesses a very good binding affinity towards HLA-
DPA1∗01:03/HLA-DPB1∗02:01, while the affinity differs
by ∼52 kcal/mol for HLA-DQA1∗01:01/HLA-DQB1∗05:01
(Table 4). This is expected as the binding pockets of the
HLA molecules are highly diverse with respect to the
amino acid sequence, and therefore, the antigen binding

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
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Table 4. The estimated binding free energy of HLA-epitope complexes after performing Molecular Docking with DOCK6. GridVDW and
�EEEL are the interaction energies due to electrostatics and van der Waals interactions, and Dock Score is the binding free energy

Epitope No. HLA alleles Gridvdw (kcal/mol) GridEEL (kcal/mol) Dock score (kcal/mol)

MHC-I
2.2.2 HLA-A∗30:02 −77.11 −20.55 −97.67
2.2.3 HLA-A∗01:01 −85.50 −9.43 −94.93

HLA-A∗26:01 −69.43 −21.54 −90.97
HLA-A∗30:02 −73.88 −10.43 −84.30

2.2.5 HLA-A∗68:02 −77.53 −6.50 −84.02
MHC-II

2.2.1 HLA-DQA1∗01:02/HLA-DQB1∗06:02 −78.47 0.62 −77.86
HLA-DQA1∗04:01/HLA-DQB1∗04:02 −104.62 −12.89 −117.51
HLA-DQA1∗05:01/HLA-DQB1∗03:01 −104.93 −17.13 −122.06
HLA-DRB1∗09:01 −95.74 −12.88 −108.62

2.2.4 HLA-DPA1∗01:03/HLA-DPB1∗02:01 −114.10 −22.26 −136.36
HLA-DQA1∗01:01/HLA-DQB1∗05:01 −82.91 −0.63 −83.54
HLA-DQA1∗05:01/HLA-DQB1∗03:01 −102.13 −10.39 −112.52

Table 5. The estimated binding free energy of HLA-epitope complexes using MM-PBSA after performing MD simulations. �EVDW and
�EEEL are the changes in interaction energy due to electrostatics and van der Waals interactions, �GPOL and �GNP are the changes in
the polar and non-polar part of the solvation free energy and �Gbind is the change in the binding free energy

Epitope No. HLA alleles �EVDW(kcal/mol) �EEEL (kcal/mol) �GPOL (kcal/mol) �GNP (kcal/mol) �Gbind (kcal/mol)

MHC-I
2.2.2 HLA-A∗30:02 −65.34 ± 5.29 −125.39 ± 18.93 141.01 ± 17.72 −7.85 ± 0.4 −57.56 ± 4.22
2.2.3 HLA-A∗01:01 −45.8 ± 5.07 −57.52 ± 20.79 73.34 ± 18.80 −6.53 ± 0.37 −36.51 ± 4.57

HLA-A∗26:01 −43.82 ± 6.69 −50.71 ± 15.20 56.43 ± 14.50 −6.29 ± 0.81 −44.39 ± 6.47
HLA-A∗30:02 −80.38 ± 6.21 −138.93 ± 10.81 154.10 ± 9.18 −9.58 ± 0.21 −74.80 ± 5.02

2.2.5 HLA-A∗68:02 −62.65 ± 4.22 −64.73 ± 17.62 83.47 ± 14.83 −7.48 ± 0.24 −51.39 ± 4.36
MHC-II

2.2.1 HLA-DQA1∗01:02/HLA-DQB1∗06:02 −80.76 ± 5.15 −21.02 ± 18.03 42.68 ± 17.13 −9.19 ± 0.47 −68.28 ± 5.05
HLA-DQA1∗04:01/HLA-DQB1∗04:02 −95.32 ± 7.53 −4.07 ± 16.18 29.75 ± 17.70 −11.08 ± 0.94 −80.72 ± 6.05
HLA-DQA1∗05:01/HLA-DQB1∗03:01 −66.17 ± 6.14 −11.64 ± 14.42 32.88 ± 13.91 −8.22 ± 0.76 −53.16 ± 5.35
HLA-DRB1∗09:01 −90.06 ± 4.98 3.23 ± 9.13 15.09 ± 9.47 −10.08 ± 0.34 −81.81 ± 6.06

2.2.4 HLA-DPA1∗01:03/HLA-DPB1∗02:01 −103.46 ± 4.84 −158.79 ± 18.29 181.21 ± 17.09 −11.38 ± 0.39 −92.41 ± 5.37
HLA-DQA1∗01:01/HLA-DQB1∗05:01 −68.90 ± 6.39 −53.92 ± 17.25 71.80 ± 16.31 −8.50 ± 0.56 −59.52 ± 5.53
HLA-DQA1∗05:01/HLA-DQB1∗03:01 −61.47 ± 5.17 −91.13 ± 14.50 102.30 ± 13.98 −8.49 ± 0.67 −58.78 ± 3.86

groove has a preference towards certain amino acids to
assure a stable interaction between the MHC molecule
and the peptide. Overall, our results indicate that the five
constituent T-cell epitopes of consensus epitope number
2 effectively bind to different HLA molecules, which is
consistent with our earlier results. We also note the pref-
erence of MHC molecules towards certain peptides and
vice-versa, which is in-line with previous studies [16, 25].

Conformational stability of HLA-epitope
complexes
In above analysis, we show that the five constituent T-
cell epitopes of consensus epitope number 2 have good
binding affinity towards HLA molecules, but given the
approximations made in molecular docking such as, the
‘target receptor’ is considered rigid, absence of water
molecules, etc., it does not guarantee the correct binding
mode for a ligand and therefore, to further confirm the
results of molecular docking, we performed binding free
energy calculations using MM-PBSA in combination with
MD simulation.

First, we tried to understand the conformational
stability of the HLA-epitope complexes in terms of three

structural order parameters: (i) root-mean square devi-
ation (RMSD), (ii) radius of gyration (Rg) and (iii) solvent-
accessible surface area (SASA), and the results are
shown in Supplementary Figure 1 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
On comparing the Cα RMSD of the HLA proteins,
it can be clearly seen that all the systems attained
equilibrium in the first 40 ns and remained stable
thereafter, except for HLA-A∗68:02-epitope-2.2.5 (orange
line in the top-left panel of Supplementary Figure 1) and
HLA-DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.1 (orange
line in the top-right panel of Supplementary Figure 1,
see Supplementary Data available online at http://bib.
oxfordjournals.org/) complexes. The RMSD plot of HLA-
A∗68:02-epitope-2.2.5 showed slightly larger deviations
in the initial 60 ns. The RMSD rose up to 3.7 Å
around 43 ns, but thereafter, a gradual drop is seen
until 65 ns, after which a stable trajectory is seen till
100 ns. Similar behaviour was observed for the HLA-
DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.1 complex.
The RMSD of the HLA-DQA1∗05:01/HLA-DQB1∗03:01-
epitope-2.2.4 is slightly higher than the other HLA-
epitope complexes and fluctuates around an average
value of ∼2.5 Å (blue line in the top-right panel of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data


8 | Shukla et al.

Supplementary Figure 1, see Supplementary Data
available online at http://bib.oxfordjournals.org/). The
initial fluctuation in the RMSD indicates the spatial
adjustment of the epitope in the binding site of the
HLA molecules. Overall, the results suggest that all
the systems achieved a steady equilibrium after 65 ns,
suggesting an equilibrated and stabilized HLA-epitope
interaction.

To further understand the stability of the HLA-epitope
complexes, we computed the radius of gyration (Rg)
and SASA of the HLA proteins, as a measure of the
compactness of the protein structure upon epitope
binding. Except for HLA-A∗68:02-epitope-2.2.5 (orange
line in the center-left panel of Supplementary Figure 1,
see Supplementary Data available online at http://bib.
oxfordjournals.org/) which showed major fluctuations
in the initial 60 ns (Rg values ranges between 23.3
and 24.5 Å), all the complexes showed fairly stable
Rg values since the beginning of the simulations till
100 ns. Interestingly, we observed that the SASA values
for all the HLA-epitope complexes remained stable
throughout the length of the simulation time. All these
results indicate a stable conformational dynamics of the
HLA-epitope interaction and substantiate our previous
results.

MM-PBSA re-scoring and molecular interactions
stabilizing HLA-epitope complexes
To further confirm the results of molecular docking
and understand the molecular interactions stabiliz-
ing the HLA-epitope complex, binding free energy
calculation using MM-PBSA was performed wherein
both receptor flexibility as well as effect of water
molecules are taken care of, which is usually ignored
in molecular docking. The calculated binding free
energies for the HLA-epitope complexes averaged
over the snapshots extracted from the last 20 ns MD
trajectories are listed in Table 5. We note that the
exact order of the ranking of binding affinities of
the epitopes towards both MHC-I and MHC-II protein
molecules have changed, but consistent with the
results of molecular docking, all the epitopes bind
favourably to the HLA molecules. The binding free
energy ranges from −74.80 ± 5.02 (HLA-A∗30:02-epitope-
2.2.3) to −36.51 ± 4.57 kcal/mol (HLA-A∗01:01-epitope-
2.2.3) for MHC-I molecules and −92.41 ± 5.37 (HLA-
DPA1∗01:03/HLA-DPB1∗02:01-epitope-2.2.4) to −53.16 ±
5.35 kcal/mol (HLA-DQA1∗05:01/HLA-DQB1∗03:01-
epitope-2.2.1) for MHC-II molecules. Consistent with
molecular docking results, the best binding affinity
was observed for epitope number 2.2.4 against HLA-
DPA1∗01:03/HLA-DPB1∗02:01 (−92.41 ± 5.37 kcal/mol) for
MHC-II molecules; however, the results changed for
epitope number 2.2.1 against HLA-DQA1∗01:02/HLA-
DQB1∗06:02 and HLA-DQA1∗05:01/HLA-DQB1∗03:01. The
epitope number 2.2.1 now possesses the least binding
affinity towards HLA-DQA1∗05:01/HLA-DQB1∗03:01 not
HLA-DQA1∗01:02/HLA-DQB1∗06:02. The results also

changed for the three constituent T-cell epitopes of
consensus epitope number 2 against class I MHC
molecules. In addition to this, we also observed a
disparity between the contribution of the gas phase
interactions, i.e. both van der Waals interaction as well
as the electrostatic interactions between molecular
docking and MM-PBSA results. Both the components now
equally contribute to the stability of the MHC-I-epitope
complexes, except there are cases, where electrostatic
component overpowers the van der Waals interactions,
as is the case with HLA-A∗30:02-epitope-2.2.2 and HLA-
A∗30:02-epitope-2.2.3 complexes (Table 5). In the case
of MHC-II-epitope complexes, van der Waals interaction
dominates in the majority of the cases with a few
exceptions (Table 5). The increase in the contribution
of the electrostatic component points towards a spatial
adjustment that favours the polar interactions indi-
cating formation of mainchain–mainchain, mainchain–
sidechain and sidechain–sidechain polar interactions
(Tables 4 and 5, Figures 3 and 4). The other factor that
determines the binding affinity is the solvation free
energy (�GPOL + �GNP), which is neglected in molecular
docking, but was found to be always positive for the HLA-
epitope complexes in MM-PBSA calculations. The polar
part of the solvation free energy has opposing effects
much larger in magnitude than the non-polar part of
solvation free energy suggesting that the solvation free
energy opposes the formation of the HLA-epitope com-
plex. But, since in all the cases, the gas phase interaction
energy (�EVDW + �EEEL) combats the opposing effects
of solvation free energy, we observe stable HLA-epitope
complexes. While we did observe some discrepancies
between the molecular docking results and MM-PBSA
calculations, overall the results indicate that the epitopes
possess good binding affinity towards HLA molecules,
usually overwhelmed by van der Waals interaction in
case of MHC-II molecules, while both van der Waals and
electrostatic interactions contribute fairly to the stability
of MHC-I-epitope complexes. The molecular interactions
stabilizing the HLA-epitope complexes are shown in
Figures 3 and 4, which also indicate towards the van
der Waals interaction to be one of the major stabilizing
forces.

In addition, we also calculated the average number
of hydrogen bonds formed between the HLA and epitope
molecules as hydrogen bonds play a critical role in
stabilizing the protein-ligand interaction. The values are
listed in Supplementary Table 4 (see Supplementary Data
available online at http://bib.oxfordjournals.org/). The
average number of hydrogen bonds formed between the
HLA molecule’s antigen presenting pocket and epitopes
ranges from 3 ± 1 (HLA-A∗01:01-epitope-2.2.3) to 9 ± 2
(HLA-A∗30:02-epitope-2.2.3) for MHC-I molecules and
from 5 ± 1 (HLA-DQA1∗05:01/HLA-DQB1∗03:01-epitope-
2.2.4) to 11 ± 2 (HLA-DRB1∗09:01-epitope-2.2.1) for MHC-
II molecules, which also indicate towards the stability of
the epitopes in the antigen presenting groove of the MHC
molecules.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
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Figure 3. Molecular interactions of MHC-I-epitope complexes: (A) HLA-A∗30:02-epitope-2.2.2, (B) HLA-A∗01:01-epitope-2.2.3, (C) HLA-A∗26:01-epitope-
2.2.3, (D) HLA-A∗30:02-epitope-2.2.3 and (E) HLA-A∗68:02-epitope-2.2.5.
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Figure 4. Molecular interactions of MHC-II-epitope complexes: (A) HLA-DQA1∗01:02/HLA-DQB1∗06:02-epitope-2.2.1, (B) HLA-DQA1∗04:01/HLA-
DQB1∗04:02-epitope-2.2.1, (C) HLA-DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.1, (D) HLA-DRB1∗09:01-epitope-2.2.1, (E) HLA-DPA1∗01:03/HLA-
DPB1∗02:01-epitope-2.2.4, (F) HLA-DQA1∗01:01/HLA-DQB1∗05:01-epitope-2.2.4 and (G) HLA-DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.4.
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Structural motions and conformational
redistribution of HLA-epitope complexes
To further examine the dominant motions and con-
formational sampling of the HLA protein molecules
upon binding of the epitopes, principal component
analysis was performed. It is generally assumed that
the first 10 principal components account for more
than 90% motion of the protein responsible for their
function. Therefore, we calculated the first 10 principal
components, and the conformational sampling of
the HLA-epitope complexes in the essential subspace
illustrating the global motions along PC1 and PC2 are
shown in Supplementary Figure 2 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
It is apparent from the figure that majority of the HLA-
epitope complexes show a global collective dynamics
except for HLA-DQA1∗05:01/HLA-DQB1∗03:01-epitope-
2.2.1 (Supplementary Figure 2H, see Supplementary
Data available online at http://bib.oxfordjournals.org/),
HLA-DQA1∗01:01/HLA-DQB1∗05:01–2.2.4 (Supplemen-
tary Figure 2K, see Supplementary Data available online
at http://bib.oxfordjournals.org/) and HLA-DQA1∗05:01/
HLA-DQB1∗03:01-epitope-2.2.4 (Supplementary Figure
2L, see Supplementary Data available online at http://bib.
oxfordjournals.org/). The widespread conformational
subspace indicates that the HLA molecules manoeu-
vre through a broad conformational space before
achieving an equilibrated state. As stated earlier, in
some cases (DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.1
and DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.4), we do
observe a smaller cluster of conformations, which
indicates higher flexibility of the HLA molecules and
is consistent with the RMSD plot (orange and blue
lines in top-right panel of Supplementary Figure 1,
see Supplementary Data available online at http://bib.
oxfordjournals.org/).

To further understand the effect of epitope binding
on the conformational redistribution and the energetics
of the HLA molecules, FELs were determined as the
function of the first two principal components, PC1
and PC2. The 3D and 2D FEL plots for the HLA-epitope
complexes are shown in Figure 5 and Supplementary
Figure 3 (see Supplementary Data available online
at http://bib.oxfordjournals.org/), respectively. As can
be seen from these figures, the FEL of the MHC-I
molecules consists of a broad minima with multiple
conical ends suggesting a widespread distribution of
low-energy conformations. Similar is the case with
three MHC-II molecules, i.e. HLADQA1∗04:01/HLA-
DQB1∗04:02 (Figure 5G), HLA-DRB1∗09:01 (Figure 5I) and
HLA-DPA1∗01:03/HLA-DPB1∗02:01 (Figure 5J). However,
in case of other MHC-II molecules such as, HLA-
DQA1∗05:01/HLA-DQB1∗03:01 (Figure 5H) and HLA-
DQA1∗01:01/HLA-DQB1∗05:01 (Figure 5K), we observe
multiple minima separated by small energy barriers
in a broad basin, which indicates that epitope binding
induces selection of multiple conformations of the HLA
molecules, but only one minima consists of low-energy

conformation. Thus, both the essential dynamics and FEL
analysis indicate, although different but stable binding
stability of the HLA-epitope complexes.

Discussion and conclusions
While the world continues to suffer from the COVID-19
disease, the causal organism, i.e. SARS-CoV-2 that has
jumped off or spilled over humans from an animal reser-
voir, continues to evolve over time like any other virus
to incorporate mutations which increases its survival
and infection rate. The COVID-19 outbreak, which was
declared as pandemic by WHO within 3 months of the
first report of the disease, perdures to remain, arguably,
one of the biggest threat and mystery to mankind and
also science, as still a lot of questions such as, how the
virus infects, spreads, survives, mutates, etc. remains
unclear. However, given the collective efforts made by the
scientific community across the world who have been
working indefatigably to understand these questions to
come up with preventive measures as well as therapeutic
agents has led to the development of some RNA and
vector-based vaccines [26–28], which have been approved
under Emergency Use Authorization.

These approved vaccines from Moderna, Pfizer-
BioNTech and Oxford-AstraZeneca have shown 62–95%
efficacy in phase-3 or phase-2/3 clinical trials [26–28];
however, they still possess several challenges including
storage at ultra-low temperature, stability, scalability,
high costs and allergic reactions. Synthetic vaccines
based on peptides can minimize these challenges.
Peptide-based vaccines have the ability to generate
epitope-specific immune response and are more stable
and easily accessible under normal storage conditions
[29, 30]. Since they are chemically synthesized, they
can be manufactured at large scale with low cost [30].
Unfortunately, none of the SARS-CoV-2 vaccines rolled-
out to date in the market are peptide-based, as the
majority of the focus of the scientific and industrial
community has been on vector-based, whole pathogen,
DNA, RNA and recombinant protein-based vaccines [7].

However, like any other vaccine development
approaches, peptide vaccines also possess some limita-
tions including reduced immunogenicity and enzymatic
degradation. Such weakness could be improved by com-
bining an adjuvant or particulate delivery carriers [31].

Given the advantages associated with peptide-based
vaccines, in this study, we have tried to design B-cell and
T-cell consensus epitopes (peptides) against SARS-CoV-
2 by deploying various immuno-informatics tools and
bioinformatics databases and have also confirmed the
binding affinity of the designed epitopes against various
HLA (MHC-I and II) proteins using molecular docking,
MD simulation and binding free energy estimation
with MM-PBSA. We have meticulously selected epitope
prediction tools from a pool of software available in
the immuno-informatics research literature based on
their documented performance on the area under the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
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Figure 5. Free energy landscape (FEL) of HLA-epitope complexes in 3D space: PC1 and PC2 are the first and second principal components of the projection
of the motion of the HLA-epitope complex in phase space. (A) HLA-A∗30:02-epitope-2.2.2, (B) HLA-A∗01:01-epitope-2.2.3, (C) HLA-A∗26:01-epitope-
2.2.3, (D) HLA-A∗30:02-epitope-2.2.3, (E) HLA-A∗68:02-epitope-2.2.5, (F) HLA-DQA1∗01:02/HLA-DQB1∗06:02-epitope-2.2.1, (G) HLA-DQA1∗04:01/HLA-
DQB1∗04:02-epitope-2.2.1, (H) HLA-DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.1, (I) HLA-DRB1∗09:01-epitope-2.2.1, (J) HLA-DPA1∗01:03/HLA-DPB1∗02:01-
epitope-2.2.4, (K) HLA-DQA1∗01:01/HLA-DQB1∗05:01-epitope-2.2.4 and (L) HLA-DQA1∗05:01/HLA-DQB1∗03:01-epitope-2.2.4.

receiver operating characteristics curve (AUC) metric.
Knowing the variability of results given by B-cell and
T-cell epitope predictors and the recommendation
of Moutaftsi et al.’s study [32], we ensured to build
consensus of results by deploying multiple methods. To
further refine our results and maximize our chances of
identifying the best vaccine candidates, we also applied

a battery of immunological properties’ tests using
well established state-of-the-art immuno-informatics
and bioinformatics tools and databases (Figure 1 and
Supplementary File 1, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

SARS-CoV-2 spike glycoprotein was predicted to be
antigenic as per VaxiJen at the start of the analysis;

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
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hence, epitope candidates were expected to be identified
throughout the protein. Nevertheless, it was necessary
to refine the analysis to identify the best candidates
which fit essential properties of a good peptide-based
vaccine candidate such as, immunogenicity, allergenicity,
population coverage, etc.

Our best four B-cell and T-cell epitope candidates were
found in S1 regions of SARS-CoV-2 spike protein, which
aligns with the fact the most of the recent epitope predic-
tion results against SARS-CoV-2 have been focused on S1
region [1, 9, 10]. However, our epitopes were concentrated
around NTD and CTD2 rather than the receptor binding
domain (RBD), which interacts with the human ACE2
receptor to facilitate the entry of SARS-CoV-2 in human
target cells [33]. In a recent study by Seyran et al. [34],
it has been proposed that the flat sialic acid-binding
domain at the NTD of the S1 subunit plays a crucial
role in fast motion over respiratory epithelium and ACE2
receptor scanning that allow SARS-CoV-2 rapid cellular
entry. And also, no high-frequency mutations have been
detected so far in the CTD of the S1 subunit [34]. In light
of the above and given the small sizes and immunogenic
properties of our final four epitopes, they remain viable
and better candidates for vaccine development when
compared with the whole spike glycoprotein or its S1 and
S2 subunits, which unfortunately in the case of SARS-
CoV had shown potential to cause lung pathology [35].

SARS-CoV-2 virus is continuing to mutate and evolve
[36] like any other virus. As of August 2021, a total
of 32 mutations have been reported on Spike glyco-
protein by Covid-Miner [37] which is enabled by data
from the Global Initiative on Sharing Avian Influenza
Data [38]. Out of these 32 mutations, four mutations
were found in our three out of final four predicted
epitopes (Supplementary Table 5, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
These four mutations mostly had very low frequency.
Epitope number 2, which was the best candidate given its
maximum global population coverage of 98.22%, had no
mutations reported in Covid-Miner. However, this does
not guarantee that epitope number 2 is immortal, but
given the robust immuno-informatics pipeline PVPredPip
we have produced (Figure 1), new epitopes based on the
evolving sequences of SARS-CoV-2 spike glycoprotein can
be rapidly predicted, as and when needed.

The effectiveness of a vaccine from a public health
program point of view depends on its specificity and
the level of population coverage among many other
factors. Conservation analysis of the final four epitopes
confirmed that they are unique and thus specific for
SARS-CoV-2 found in humans as a host. Population
coverage analysis confirmed that when the final four
epitopes are used as a set, they are able to cover 99.82%
of the overall world population (Table 2), indicating that
the development of a multi-epitope vaccine may provide
better protection against the SARS-CoV-2 virus. Con-
sidering the technical constraints, expertise and infra-
structure needed for developing multi-epitope vaccine,

especially in low income countries, and thus from the
health economics and value-for-money perspective,
epitope number 2 with its broad allele specificity
(Table 1) would be the preferred vaccine candidate. It
can cover 98% of the overall world population on its
own (Table 2) and, at the same time, is very unique
to SARS-CoV-2 isolated from human as a host species
(Table 3).

Interestingly, all the final four epitopes showed less
population coverage ranging between 0.00 and 59.15%
in the South African population (Table 2), which has
also been previously demonstrated for other vaccines
[20]. Furthermore, SARS-CoV-2 vaccines from Moderna,
Pfizer-BioNTech, Novavax and Oxford-AstraZeneca
have also been found to be less efficacious against
South African population [21–24]. With the recurrent
evidence of poor efficacy of vaccines against South
African population, it has become inevitably important
that more systematic and focused approaches are
needed for vaccine development for South African
population.

We further validated our results with molecular
docking and MD simulation experiments. Complemented
with MM-PBSA calculations, essential dynamics analysis
and FEL analysis, our results indicate a remarkable
binding affinity of the five constituent T-cell epitopes
of consensus epitope number 2 towards their corre-
sponding HLA (MHC-I and II) proteins. The van der Waals
interactions appeared to be the dominant factor respon-
sible for the stability of the HLA-epitope complexes. To
conclude, our results provide a profound biophysical
insight into the factors and energetics stabilizing the
HLA-epitope complexes of the five constituent T-cell
epitopes of consensus epitope number 2, which is
needed for triggering epitope-specific immune response
against SARS-CoV-2. Going forward, the immuno-
informatics pipeline (PVPredPip) described and the
proposed candidate epitopes could have significant
impact upon development of globally effective multi-
epitope vaccines against SARS-CoV-2.

Key points

• Considering the variable nature of the SARS-CoV-
2 which is continuing to mutate and evolve like
any other virus, persistent efforts are needed to
develop better vaccine candidates.

• In this study, we have identified four poten-
tial epitopes which have the capability to ini-
tiate both antibody and cell-mediated immune
responses, are non-allergenic and do not trigger
autoimmunity.

• These peptide sequences were also evaluated to
show 99.82% of global population coverage based
on the genotypic frequencies of HLA binding alle-
les for both MHC class-I and class-II and are
unique for SARS-CoV-2 isolated from human as
a host species.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
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• Epitope number 2 alone had a global population
coverage of 98.2%; therefore, we further validated
binding and interaction of its constituent T-cell
epitopes with their corresponding HLA proteins
using molecular docking and molecular dynam-
ics simulation experiments, followed by binding
free energy calculations with molecular mechan-
ics Poisson–Boltzmann surface area, essential
dynamics analysis and free energy landscape
analysis.

• The immuno-informatics pipeline (PVPredPip)
described and the candidate epitopes discovered
herein could have significant impact upon efforts
to develop globally effective SARS-CoV-2 vac-
cines.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.

Authors’ contributions
P.S. conceived the project, led the data analysis and visu-
alization along with P.P., B.P. and T.R. and wrote the first
draft of the manuscript. R.P., L.D.G., M.T., A.M., J.H., T.S.R,
E.M., D.G. and A.J.B. helped in data interpretation, review-
ing and editing of the manuscript. All the authors have
revised and approved the submitted version.

Acknowledgements
We are grateful for access to the Tier 2 High Performance
Computing resources provided by the Northern Ireland
High Performance Computing (NI-HPC) facility. We would
also like to thank Dr Arun Kumar from Coalition for Epi-
demic Preparedness Innovations (CEPI), Oslo, Norway, for
critically reading this manuscript and providing valuable
feedback.

Conflict of interest: A UK-wide patent application has
been filed by the Ulster University; UK Application
No. 2102598.6, patent pending. All the aspects of this
manuscript are covered in this patent application.

Funding
UKRI funded National Core Study: Immunity (NCSi4P
programme), ‘Optimal cellular assays for SARS-CoV-2
T-cell, B-cell and innate immunity’ to P.S. and D.S.G.;
programme grant jointly from Science Foundation
Ireland (SFI), Republic of Ireland and Department for
the Economy (DfE), Northern Ireland, UK, ‘COVRES:
Understanding the host-virus response in patients with
mild versus serious disease’ to P.S., T.S.R., E.M., D.S.G.
and A.J.B.; research grant from the Northern Ireland
Public Health Agency (HSC R&D Division), ‘COVRES2:
Identifying temporal immune responses associated

with Covid-19 severity’ (Grant No. COM/5631/20) to
P.S., T.S.R., E.M., D.S.G. and A.J.B.; research grant from
the Northern Ireland Public Health Agency (HSC R&D
Division), ‘Senescence biomarkers for predicting risk in
Covid-19 patients’ (Grant No. COM/5618/20) to T.S.R. and
D.S.G.; Vice-Chancellor’s Research Scholarship (VCRS),
Ulster University to B.P.; postgraduate studentship by
Department for the Economy (DfE), Northern Ireland
to T.R.; programme grant jointly from the European
Union (EU) Regional Development Fund (ERDF) EU
Sustainable Competitiveness Programme for Northern
Ireland, the Northern Ireland Public Health Agency (HSC
R&D Division) and Ulster University to A.J.B.; Kelvin-2
(Grant No. EP/T022175/1) by UK Engineering and Physical
Sciences Research Council (EPSRC) to A.J.B.

References

1. Grifoni A, Sidney J, Zhang Y, et al. A sequence homology
and bioinformatic approach can predict candidate targets for
immune responses to SARS-CoV-2. Cell Host Microbe 2020;27(4):
671–680.e2.

2. Cai Y, Zhang J, Xiao T, et al. Distinct conformational states of
SARS-CoV-2 spike protein. Science 2020;369(6511):1586–92.

3. Abdelmageed MI, Abdelmoneim AH, Mustafa MI, et al. Design of
a multiepitope-based peptide vaccine against the E protein of
human COVID-19: an immunoinformatics approach. Biomed Res
Int 2020;2020:1–12.

4. Perlman S, Netland J. Coronaviruses post-SARS: update on repli-
cation and pathogenesis. Nat Rev Microbiol 2009;7(6):439–50.

5. The WHO Mers-Cov Research Group. State of knowledge and
data gaps of middle east respiratory syndrome coronavirus
(MERS-CoV) in humans. PLoS Curr 2013;5: https://pubmed.ncbi.
nlm.nih.gov/24270606/.

6. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak asso-
ciated with a new coronavirus of probable bat origin. Nature
2020;579(7798):270–3.

7. le TT, Cramer JP, Chen R, et al. Evolution of the COVID-19 vaccine
development landscape. Nat Rev Drug Discov 2020;19(10):667–8.

8. Altmann DM, Boyton RJ, Beale R. Immunity to SARS-CoV-2 vari-
ants of concern. Science 2021;371(6534):1103–4.

9. Kiyotani K, Toyoshima Y, Nemoto K, et al. Bioinformatic predic-
tion of potential T cell epitopes for SARS-Cov-2. J Hum Genet
2020;65(7):569–75.

10. Baruah V, Bose S. Immunoinformatics-aided identification of T
cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.
J Med Virol 2020;92(5):495–500.

11. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of
protective antigens, tumour antigens and subunit vaccines. BMC
Bioinformatics 2007;8:4.

12. Saha S, Raghava GP. Prediction of continuous B-cell epitopes in
an antigen using recurrent neural network. Proteins 2006;65(1):
40–8.

13. Saha S, Raghava GPS. Bce Pred: prediction of continuous B-
cell epitopes in antigenic sequences using physico-chemical
properties. In: Nicosia G, Cutello V, Bentley PJ et al. (eds).
ICARIS2004, Vol. 3239. Berlin, Heidelberg: LNCS, Springer, 2004,
197–204.

14. Dhanda SK, Vaughan K, Schulten V, et al. Development of a
novel clustering tool for linear peptide sequences. Immunology
2018;155(3):331–45.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab496#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://pubmed.ncbi.nlm.nih.gov/24270606/
https://pubmed.ncbi.nlm.nih.gov/24270606/


Immuno-informatics analysis | 15

15. Trolle T, McMurtrey CP, Sidney J, et al. The length distribution of
class I-restricted T cell epitopes is determined by both peptide
supply and MHC allele-specific binding preference. J Immunol
2016;196(4):1480–7.

16. Calis JJ, Maybeno M, Greenbaum JA, et al. Properties of MHC class
I presented peptides that enhance immunogenicity. PLoS Comput
Biol 2013;9(10):e1003266.

17. Dimitrov I, Bangov I, Flower DR, et al. Aller TOP v. 2–a server for
in silico prediction of allergens. J Mol Model 2014;20(6):2278.

18. Wu CH, Yeh LS, Huang H, et al. The protein information resource.
Nucleic Acids Res 2003;31(1):345–7.

19. Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera–a
visualization system for exploratory research and analysis. J
Comput Chem 2004;25(13):1605–12.

20. Vanderslott S, Dadonaite B. Vaccination. 2013. (5 July 2021, date
last accessed).

21. Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited
antibodies to SARS-CoV-2 and circulating variants. Nature
2021;592(7855):616–22.

22. Xie X, Liu Y, Liu J, et al. Neutralization of SARS-CoV-2 spike
69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-
elicited sera. Nat Med 2021;27(4):620–1.

23. Mahase E. Covid-19: Novavax vaccine efficacy is 86% against
UK variant and 60% against South African variant. BMJ 2021;
372:n296.

24. Mahase E. Covid-19: South Africa pauses use of Oxford vac-
cine after study casts doubt on efficacy against variant. BMJ
2021;372:n372.

25. Alexander J, Sidney J, Southwood S, et al. Development of high
potency universal DR-restricted helper epitopes by modification
of high affinity DR-blocking peptides. Immunity 1994;1(9):751–61.

26. Baden LR, el Sahly HM, Essink B, et al. Efficacy and safety of
the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384(5):
403–16.

27. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the
BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383(27):
2603–15.

28. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of
the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2:
an interim analysis of four randomised controlled trials in Brazil,
South Africa, and the UK. Lancet 397(10269):99–111.

29. Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem
Sci 2016;7(2):842–54.

30. di Natale C, la Manna S, de Benedictis I, et al. Perspectives in
peptide-based vaccination strategies for syndrome coronavirus
2 pandemic. Front Pharmacol 2020;11:578382.

31. Nevagi RJ, Toth I, Skwarczynski M. Peptide-based vaccines.
In: Koutsopoulos S (ed). Peptide Applications in Biomedicine,
Biotechnology and Bioengineering. Woodhead Publishing, 2018,
327–58. https://www.sciencedirect.com/book/9780081007365/
peptide-applications-in-biomedicine-biotechnology-and-bioe
ngineering

32. Moutaftsi M, Peters B, Pasquetto V, et al. A consensus epitope
prediction approach identifies the breadth of murine T(CD8+)-
cell responses to vaccinia virus. Nat Biotechnol 2006;24(7):
817–9.

33. Walls AC, Park YJ, Tortorici MA, et al. Structure, function,
and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell
2020;181(2):281–292.e6.

34. Seyran M, Takayama K, Uversky VN, et al. The structural
basis of accelerated host cell entry by SARS-CoV-2. FEBS J
2021;288(17):5010–5020. 10.1111/febs.15651.

35. Ma C, Su S, Wang J, et al. From SARS-CoV to SARS-CoV-2: safety
and broad-spectrum are important for coronavirus vaccine
development. Microbes Infect 2020;22(6–7):245–53.

36. Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2-what
do they mean? JAMA 2021;325(6):529–31.

37. Massacci A, Sperandio E, D’Ambrosio L, et al. Design of a com-
panion bioinformatic tool to detect the emergence and geo-
graphical distribution of SARS-CoV-2 spike protein genetic vari-
ants. J Transl Med 2020;18(1):494.

38. Elbe S, Buckland-Merrett G. Data, disease and diplomacy:
GISAID’s innovative contribution to global health. Glob Chall
2017;1(1):33–46.

https://www.sciencedirect.com/book/9780081007365/peptide-applications-in-biomedicine-biotechnology-and-bioengineering
https://www.sciencedirect.com/book/9780081007365/peptide-applications-in-biomedicine-biotechnology-and-bioengineering
https://www.sciencedirect.com/book/9780081007365/peptide-applications-in-biomedicine-biotechnology-and-bioengineering
https://doi.org/10.1111/febs.15651

	 Immuno-informatics analysis predicts B and   T cell consensus epitopes for designing   peptide vaccine against SARS-CoV-2 with   99.82&#x0025; global population coverage
	Introduction
	Materials and methods
	Results
	Discussion and conclusions
	Key points
	Supplementary data
	Authors' contributions
	 Acknowledgements
	Funding


