50 research outputs found

    Decreasing glioma recurrence through adjuvant cancer stem cell inhibition

    Get PDF
    Gliomas remain one of the most challenging solid organ tumors to treat and are marked clinically by invariable recurrence despite multimodal intervention (surgery, chemotherapy, radiation). This recurrence perhaps, is as a consequence of the failure to eradicate a tumor cell subpopulation, termed cancer stem cells. Isolating, characterizing, and understanding these tumor-initiating cells through cellular and molecular markers, along with genetic and epigenetic understanding will allow for selective targeting through therapeutic agents and holds promise for decreasing glioma recurrence

    Chronic leptomeningitis and spinal intradural mass secondary to Alternaria infection in a patient with ventriculoperitoneal shunt

    Get PDF
    Fungal infection following placement of ventriculostomy or ventriculoperitoneal (VP) shunt is uncommon. We report the first case of Alternaria related central nervous system (CNS) shunt infection in a patient with CNS ependymoma manifesting as leptomeningitis and a spinal intradural mass. This case illustrates the diagnostic and management challenges

    Stem cells and the origin of gliomas: A historical reappraisal with molecular advancements.

    Get PDF
    The biology of both normal and tumor development clearly possesses overlapping and parallel features. Oncogenes and tumor suppressors are relevant not only in tumor biology, but also in physiological developmental regulators of growth and differentiation. Conversely, genes identified as regulators of developmental biology are relevant to tumor biology. This is particularly relevant in the context of brain tumors, where recent evidence is mounting that the origin of brain tumors, specifically gliomas, may represent dysfunctional developmental neurobiology. Neural stem cells are increasingly being investigated as the cell type that originally undergoes malignant transformation - the cell of origin - and the evidence for this is discussed

    Stem cell-mediated osteogenesis: therapeutic potential for bone tissue engineering

    Get PDF
    Intervertebral disc degeneration often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone, or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells have received attention for their ability to differentiate into osteoblasts, cells that synthesize new bone. With the recent advances in scaffold and biomaterial technology as well as stem cell manipulation and transplantation, stem cells and their scaffolds are uniquely positioned to bring about significant improvements in the treatment and outcomes of spinal fusion and other injuries

    Ethical considerations in targeted paediatric neurosurgery missions

    Get PDF
    ABSTRACT Within the context of global health development approaches, surgical missions to provide care for underserved populations remain the least studied interventions with regard to their methodology. Because of the unique logistical needs of delivering operative care, surgical missions are often described solely in terms of cases performed, with a paucity of discourse on medical ethics. Within surgery, subspecialties that serve patients on a non-elective basis should, it could be argued, create mission strategies that involve a didactic approach and the propagation of sustainable surgical care. The ethical considerations have yet to be described for paediatric neurosurgical outreach missions. We present here the perspectives of neurosurgeons who have participated in surgical outreach missions in Central America, South America, Eastern Europe and sub-Saharan Africa from the vantage point of both the visiting mission team and the host team that accommodates the mission efforts

    Maria Auxiliadora Hospital in Lima, Peru as a model for neurosurgical outreach to international charity hospitals

    Get PDF
    A myriad of geopolitical and financial obstacles have kept modern neurosurgery from effectively reaching the citizens of the developing world. Targeted neurosurgical outreach by academic neurosurgeons to equip neurosurgical operating theaters and train local neurosurgeons is one method to efficiently and cost effectively improve sustainable care provided by international charity hospitals. The International Neurosurgical Children’s Association (INCA) effectively improved the available neurosurgical care in the Maria Auxiliadora Hospital of Lima, Peru through the advancement of local specialist education and training. Neurosurgical equipment and training were provided for the local neurosurgeons by a mission team from the University of California at San Diego. At the end of 3Β years, with one intensive week trip per year, the host neurosurgeons were proficiently and independently applying microsurgical techniques to previously performed operations, and performing newly learned operations such as neuroendoscopy and minimally invasive neurosurgery. Our experiences may serve as a successful template for the execution of other small scale, sustainable neurosurgery missions worldwide

    Cytotoxic T Lymphocyte Trafficking and Survival in an Augmented Fibrin Matrix Carrier

    Get PDF
    Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment
    corecore