24 research outputs found
Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD
Recommended from our members
Computational and Statistical Methods for Extracting Biological Signal from High-Dimensional Microbiome Data
Next-generation sequencing (NGS) has effected an explosion of research into the relationship between genetic information and a variety of biological conditions. One of the most exciting areas of study is how the trillions of microbial species that we share this Earth with affect our health. However, the process of extracting useful biological insights from this breadth of data is far from trivial. There are numerous statistical and computational considerations in addition to the already complex and messy biological problems. In this thesis, I describe my work on developing and implementing software to tackle the complex world of statistical microbiome analysis.In the first part of this thesis, we review the applications and challenges of performing dimensionality reduction on microbiome data comprising thousands of microbial taxa. When dealing with this high dimensionality, it is imperative to be able to get an overview of the community structure in a lower dimensional space that can be both visualized and interpreted. We review the statistical considerations for dimensionality reduction and the existing tools and algorithms that can and cannot address them. This includes discussions about sparsity, compositionality, and phylogenetic signal. We also make recommendations about tools and algorithms to consider for different use-cases.
In the second part of this thesis, we present a new software, Evident, designed to assist researchers with statistical analysis of microbiome effect sizes and power analysis. Effect sizes of statistical tests are not widely reported in microbiome datasets, limiting the interpretability of community differences such as alpha and beta diversity. As more large microbiome studies are produced, researchers have the opportunity to mine existing datasets to get a sense of the effect size for different biological conditions. These, in turn, can be used to perform power analysis prior to designing an experiment, allowing researchers to better allocate resources. We show how Evident is scalable to dozens of datasets and provides easy calculation and exploration of effect sizes and power analysis from existing data.
In the third part of this thesis, we describe a novel investigation into the joint microbiome and metabolome axis in colorectal cancer. In most cases of sporadic colorectal cancers (CRC), tumorigenesis is a multistep process driven by genomic alterations in concert with dietary influences. In addition, mounting evidence has implicated the gut microbiome as an effector in the development and progression of CRC. While large meta-analyses have provided mechanistic insight into disease progression in CRC patients, study heterogeneity has limited causal associations. To address this limitation, multi-omics studies on genetically controlled cohorts of mice were performed to distinguish genetic and dietary influences. Diet was identified as the major driver of microbial and metabolomic differences, with reductions in alpha diversity and widespread changes in cecal metabolites seen in HFD-fed mice. Similarly, the levels of non-classic amino acid conjugated forms of the bile acid cholic acid (AA-CAs) increased with HFD. We show that these AA-CAs signal through the nuclear receptor FXR and membrane receptor TGR5 to functionally impact intestinal stem cell growth. In addition, the poor intestinal permeability of these AA-CAs supports their localization in the gut. Moreover, two cryptic microbial strains, Ileibacterium valens and Ruminococcus gnavus, were shown to have the capacity to synthesize these AA-CAs. This multi-omics dataset from CRC mouse models supports diet-induced shifts in the microbiome and metabolome in disease progression with potential utility in directing future diagnostic and therapeutic developments.
In the fourth chapter, we demonstrate a new framework for performing differential abundance analysis using customized statistical modeling. As we learn more and more about the relationship between the microbiome and biological conditions, experimental protocols are becoming more and more complex. For example, meta-analyses, interventions, longitudinal studies, etc. are being used to better understand the dynamic nature of the microbiome. However, statistical methods to analyze these relationships are lacking – especially in the field of differential abundance. Finding biomarkers associated with conditions of interest must be performed with statistical care when dealing with these kinds of experimental designs. We present BIRDMAn, a software package integrating probabilistic programming with Stan to build custom models for analyzing microbiome data. We show that, on both simulated and real datasets, BIRDMAn is able to extract novel biological signals that are missed by existing methods.
These chapters, taken together, advance our knowledge of statistical analysis of microbiome data and provide tools and references for researchers looking to perform analysis on their own data
Reduced Gut Microbiome Diversity in People With HIV Who Have Distal Neuropathic Pain.
Gut dysbiosis, defined as pathogenic alterations in the distribution and abundance of different microbial species, is associated with neuropathic pain in a variety of clinical conditions, but this has not been explored in the context of neuropathy in people with HIV (PWH). We assessed gut microbial diversity and dysbiosis in PWH and people without HIV (PWoH), some of whom reported distal neuropathic pain (DNP). DNP was graded on a standardized, validated severity scale. The gut microbiome was characterized using 16S rRNA sequencing and diversity was assessed using phylogenetic tree construction. Songbird analysis (https://github.com/mortonjt/songbird) was used to produce a multinomial regression model predicting counts of specific microbial taxa through metadata covariate columns. Participants were 226 PWH and 101 PWoH, mean (SD) age 52.0 (13.5), 21.1% female, 54.7% men who have sex with men, 44.7% non-white. Among PWH, median (interquartile range, IQR) nadir and current CD4 were 174 (21, 302) and 618 (448, 822), respectively; 90% were virally suppressed on antiretroviral therapy. PWH and PWoH did not differ with respect to microbiome diversity as indexed by Faith's phylogenetic diversity (PD). More severe DNP was associated with lower alpha diversity as indexed by Faith's phylogenetic diversity in PWH (Spearman's ρ = .224, P = 0.0007), but not in PWoH (Spearman's ρ = .032, P = .748). These relationships were not confounded by demographics or disease factors. In addition, the log-ratio of features identified at the genus level as Blautia to Lachnospira was statistically significantly higher in PWH with DNP than in PWH without DNP (t-test, P = 1.01e-3). Furthermore, the log-ratio of Clostridium features to Lachnospira features also was higher in PWH with DNP than in those without (t-test, P = 6.24e-5). Our results, in combination with previous findings in other neuropathic pain conditions, suggest that gut dysbiosis, particularly reductions in diversity and relative increases in the ratios of Blautia and Clostridium to Lachnospira, may contribute to prevalent DNP in PWH. Two candidate pathways for these associations, involving microbial pro-inflammatory components and microbially-produced anti-inflammatory short chain fatty acids, are discussed. Future studies might test interventions to re-establish a healthy gut microbiota and determine if this prevents or improves DNP. PERSPECTIVE: The association of neuropathic pain in people with HIV with reduced gut microbial diversity and dysbiosis raises the possibility that re-establishing a healthy gut microbiota might ameliorate neuropathic pain in HIV by reducing proinflammatory and increasing anti-inflammatory microbial products
Uniform Manifold Approximation and Projection (UMAP) Reveals Composite Patterns and Resolves Visualization Artifacts in Microbiome Data.
Microbiome data are sparse and high dimensional, so effective visualization of these data requires dimensionality reduction. To date, the most commonly used method for dimensionality reduction in the microbiome is calculation of between-sample microbial differences (beta diversity), followed by principal-coordinate analysis (PCoA). Uniform Manifold Approximation and Projection (UMAP) is an alternative method that can reduce the dimensionality of beta diversity distance matrices. Here, we demonstrate the benefits and limitations of using UMAP for dimensionality reduction on microbiome data. Using real data, we demonstrate that UMAP can improve the representation of clusters, especially when the clusters are composed of multiple subgroups. Additionally, we show that UMAP provides improved correlation of biological variation along a gradient with a reduced number of coordinates of the resulting embedding. Finally, we provide parameter recommendations that emphasize the preservation of global geometry. We therefore conclude that UMAP should be routinely used as a complementary visualization method for microbiome beta diversity studies. IMPORTANCE UMAP provides an additional method to visualize microbiome data. The method is extensible to any beta diversity metric used with PCoA, and our results demonstrate that UMAP can indeed improve visualization quality and correspondence with biological and technical variables of interest. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/knightlab-analyses/umap-microbiome-benchmarking; additionally, we have provided a QIIME 2 plugin for UMAP at https://github.com/biocore/q2-umap
Recommended from our members
Visualizing 'omic feature rankings and log-ratios using Qurro.
Many tools for dealing with compositional ' 'omics' data produce feature-wise values that can be ranked in order to describe features' associations with some sort of variation. These values include differentials (which describe features' associations with specified covariates) and feature loadings (which describe features' associations with variation along a given axis in a biplot). Although prior work has discussed the use of these 'rankings' as a starting point for exploring the log-ratios of particularly high- or low-ranked features, such exploratory analyses have previously been done using custom code to visualize feature rankings and the log-ratios of interest. This approach is laborious, prone to errors and raises questions about reproducibility. To address these problems we introduce Qurro, a tool that interactively visualizes a plot of feature rankings (a 'rank plot') alongside a plot of selected features' log-ratios within samples (a 'sample plot'). Qurro's interface includes various controls that allow users to select features from along the rank plot to compute a log-ratio; this action updates both the rank plot (through highlighting selected features) and the sample plot (through displaying the current log-ratios of samples). Here, we demonstrate how this unique interface helps users explore feature rankings and log-ratios simply and effectively
Quantifying Tumor Heterogeneity via MRI Habitats to Characterize Microenvironmental Alterations in HER2+ Breast Cancer
This study identifies physiological habitats using quantitative magnetic resonance imaging (MRI) to elucidate intertumoral differences and characterize microenvironmental response to targeted and cytotoxic therapy. BT-474 human epidermal growth factor receptor 2 (HER2+) breast tumors were imaged before and during treatment (trastuzumab, paclitaxel) with diffusion-weighted MRI and dynamic contrast-enhanced MRI to measure tumor cellularity and vascularity, respectively. Tumors were stained for anti-CD31, anti-ɑSMA, anti-CD45, anti-F4/80, anti-pimonidazole, and H&E. MRI data was clustered to identify and label each habitat in terms of vascularity and cellularity. Pre-treatment habitat composition was used stratify tumors into two “tumor imaging phenotypes” (Type 1, Type 2). Type 1 tumors showed significantly higher percent tumor volume of the high-vascularity high-cellularity (HV-HC) habitat compared to Type 2 tumors, and significantly lower volume of low-vascularity high-cellularity (LV-HC) and low-vascularity low-cellularity (LV-LC) habitats. Tumor phenotypes showed significant differences in treatment response, in both changes in tumor volume and physiological composition. Significant positive correlations were found between histological stains and tumor habitats. These findings suggest that the differential baseline imaging phenotypes can predict response to therapy. Specifically, the Type 1 phenotype indicates increased sensitivity to targeted or cytotoxic therapy compared to Type 2 tumors
Quantifying Tumor Heterogeneity via MRI Habitats to Characterize Microenvironmental Alterations in HER2+ Breast Cancer
This study identifies physiological habitats using quantitative magnetic resonance imaging (MRI) to elucidate intertumoral differences and characterize microenvironmental response to targeted and cytotoxic therapy. BT-474 human epidermal growth factor receptor 2 (HER2+) breast tumors were imaged before and during treatment (trastuzumab, paclitaxel) with diffusion-weighted MRI and dynamic contrast-enhanced MRI to measure tumor cellularity and vascularity, respectively. Tumors were stained for anti-CD31, anti-ɑSMA, anti-CD45, anti-F4/80, anti-pimonidazole, and H&E. MRI data was clustered to identify and label each habitat in terms of vascularity and cellularity. Pre-treatment habitat composition was used stratify tumors into two “tumor imaging phenotypes” (Type 1, Type 2). Type 1 tumors showed significantly higher percent tumor volume of the high-vascularity high-cellularity (HV-HC) habitat compared to Type 2 tumors, and significantly lower volume of low-vascularity high-cellularity (LV-HC) and low-vascularity low-cellularity (LV-LC) habitats. Tumor phenotypes showed significant differences in treatment response, in both changes in tumor volume and physiological composition. Significant positive correlations were found between histological stains and tumor habitats. These findings suggest that the differential baseline imaging phenotypes can predict response to therapy. Specifically, the Type 1 phenotype indicates increased sensitivity to targeted or cytotoxic therapy compared to Type 2 tumors
Recommended from our members
Determination of Effect Sizes for Power Analysis for Microbiome Studies Using Large Microbiome Databases.
Herein, we present a tool called Evident that can be used for deriving effect sizes for a broad spectrum of metadata variables, such as mode of birth, antibiotics, socioeconomics, etc., to provide power calculations for a new study. Evident can be used to mine existing databases of large microbiome studies (such as the American Gut Project, FINRISK, and TEDDY) to analyze the effect sizes for planning future microbiome studies via power analysis. For each metavariable, the Evident software is flexible to compute effect sizes for many commonly used measures of microbiome analyses, including α diversity, β diversity, and log-ratio analysis. In this work, we describe why effect size and power analysis are necessary for computational microbiome analysis and show how Evident can help researchers perform these procedures. Additionally, we describe how Evident is easy for researchers to use and provide an example of efficient analyses using a dataset of thousands of samples and dozens of metadata categories