7 research outputs found

    Integration of tools for binding archetypes to SNOMED CT

    Get PDF
    Background The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Methods Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. Results An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Conclusion Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail. Background The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Methods Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. Results An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Conclusion Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail.Original Publication: Erik Sundvall, Rahil Qamar, Mikael Nyström, Mattias Forss, Håkan Petersson, Hans Åhlfeldt and Alan Rector, Integration of Tools for Binding Archetypes to SNOMED CT, 2008, BMC Medical Informatics and Decision Making, (8), S7. http://dx.doi.org/10.1186/1472-6947-8-S1-S7 Licensee: BioMed Central http://www.biomedcentral.com/</p

    How Can a Clinical Data Modelling Tool Be Used to Represent Data Items of Relevance to Paediatric Clinical Trials? Learning from the Conect4children (c4c) Consortium

    No full text
    Data dictionaries for clinical trials are often created manually, with data structures and controlled vocabularies specific for a trial or family of trials within a sponsor&rsquo;s portfolio. Microsoft Excel is commonly used to capture the representation of data dictionary items but has limited functionality for this purpose. The conect4children (c4c) network is piloting the Direcht clinical data modelling tool to model their Cross Cutting Paediatric Data Dictionary (CCPDD) in a more formalised way. The first pilot had the key objective of testing whether a clinical data modelling tool could be used to represent data items from the CCPDD. The key objective of the second pilot is to establish whether a small team with little or no experience of clinical data modelling can use Direcht to expand the CCPDD. Clinical modelling is the process of structuring clinical data so it can be understood by computer systems and humans. The model contains all of the elements that are needed to define the data item. Results from the pilots show that Direcht creates a structured environment to build data items into models that fit into the larger CCPDD. Models can be represented as an HTML document, mind map, or exported in various formats for import into a computer system. Challenges identified over the course of both pilots are being addressed with c4c partners and external stakeholders

    How Can a Clinical Data Modelling Tool Be Used to Represent Data Items of Relevance to Paediatric Clinical Trials? Learning from the Conect4children (c4c) Consortium

    No full text
    Data dictionaries for clinical trials are often created manually, with data structures and controlled vocabularies specific for a trial or family of trials within a sponsor’s portfolio. Microsoft Excel is commonly used to capture the representation of data dictionary items but has limited functionality for this purpose. The conect4children (c4c) network is piloting the Direcht clinical data modelling tool to model their Cross Cutting Paediatric Data Dictionary (CCPDD) in a more formalised way. The first pilot had the key objective of testing whether a clinical data modelling tool could be used to represent data items from the CCPDD. The key objective of the second pilot is to establish whether a small team with little or no experience of clinical data modelling can use Direcht to expand the CCPDD. Clinical modelling is the process of structuring clinical data so it can be understood by computer systems and humans. The model contains all of the elements that are needed to define the data item. Results from the pilots show that Direcht creates a structured environment to build data items into models that fit into the larger CCPDD. Models can be represented as an HTML document, mind map, or exported in various formats for import into a computer system. Challenges identified over the course of both pilots are being addressed with c4c partners and external stakeholders
    corecore