340 research outputs found

    Status and future development of Heating and Current Drive for the EU DEMO

    Get PDF
    The European DEMO is a pulsed device with pulse length of 2 hours. The functions devoted to the heating and current drive system are: plasma breakdown, plasma ramp-up to the flat-top where fusion reactions occur, the control of the plasma during the flat-top phase, and finally the plasma ramp-down. The EU-DEMO project was in a Pre-Concept Design Phase during 2014-2020, meaning that in some cases, the design values of the device and the precise requirements from the physics point of view were not yet frozen. A total of 130 MW was considered for the all phases of the plasma: in the flat top, 30 MW is required for neoclassical tearing modes (NTM) control, 30 MW for burn control, and 70 MW for the control of thermal instability (TI), without any specific functions requested from each system, Electron Cyclotron (EC), Ion Cyclotron (IC), or Neutral Beam (NB) Injection. At the beginning of 2020, a strategic decision was taken, to consider EC as the baseline for the next phase (in 2021 and beyond). R&D on IC and NB will be risk mitigation measures. In parallel with progresses in Physics modelling, a decision point on the heating strategy will be taken by 2024. This paper describes the status of the R&D development during the period 2014-2020. It assumes that the 3 systems EC, IC and NB will be needed. For integration studies, they are assumed to be implemented at a power level of at least 50 MW. This paper describes in detail the status reached by the EC, IC and NB at the end of 2020. It will be used in the future for further development of the baseline heating method EC, and serves as starting point to further develop IC and NB in areas needed for these systems to be considered for DEMO

    Status and future development of Heating and Current Drive for the EU DEMO

    Get PDF
    The European DEMO is a pulsed device with pulse length of 2 hours. The functions devoted to the heating and current drive system are: plasma breakdown, plasma ramp-up to the flat-top where fusion reactions occur, the control of the plasma during the flat-top phase, and finally the plasma ramp-down. The EU-DEMO project was in a Pre-Concept Design Phase during 2014-2020, meaning that in some cases, the design values of the device and the precise requirements from the physics point of view were not yet frozen. A total of 130 MW was considered for the all phases of the plasma: in the flat top, 30 MW is required for neoclassical tearing modes (NTM) control, 30 MW for burn control, and 70 MW for the control of thermal instability (TI), without any specific functions requested from each system, Electron Cyclotron (EC), Ion Cyclotron (IC), or Neutral Beam (NB) Injection. At the beginning of 2020, a strategic decision was taken, to consider EC as the baseline for the next phase (in 2021 and beyond). R&D on IC and NB will be risk mitigation measures. In parallel with progresses in Physics modelling, a decision point on the heating strategy will be taken by 2024. This paper describes the status of the R&D development during the period 2014-2020. It assumes that the 3 systems EC, IC and NB will be needed. For integration studies, they are assumed to be implemented at a power level of at least 50 MW. This paper describes in detail the status reached by the EC, IC and NB at the end of 2020. It will be used in the future for further development of the baseline heating method EC, and serves as starting point to further develop IC and NB in areas needed for these systems to be considered for DEMO

    Spectrum of Phenotypic, Genetic, and Functional Characteristics in Patients With Epilepsy With KCNC2 Pathogenic Variants

    Get PDF
    Background and ObjectivesKCNC2 encodes Kv3.2, a member of the Shaw-related (Kv3) voltage-gated potassium channel subfamily, which is important for sustained high-frequency firing and optimized energy efficiency of action potentials in the brain. The objective of this study was to analyze the clinical phenotype, genetic background, and biophysical function of disease-associated Kv3.2 variants.MethodsIndividuals with KCNC2 variants detected by exome sequencing were selected for clinical, further genetic, and functional analysis. Cases were referred through clinical and research collaborations. Selected de novo variants were examined electrophysiologically in Xenopus laevis oocytes.ResultsWe identified novel KCNC2 variants in 18 patients with various forms of epilepsy, including genetic generalized epilepsy (GGE), developmental and epileptic encephalopathy (DEE) including early-onset absence epilepsy, focal epilepsy, and myoclonic-atonic epilepsy. Of the 18 variants, 10 were de novo and 8 were classified as modifying variants. Eight drug-responsive patients became seizure-free using valproic acid as monotherapy or in combination, including severe DEE cases. Functional analysis of 4 variants demonstrated gain of function in 3 severely affected DEE cases and loss of function in 1 case with a milder phenotype (GGE) as the underlying pathomechanisms.DiscussionThese findings implicate KCNC2 as a novel causative gene for epilepsy and emphasize the critical role of KV3.2 in the regulation of brain excitability

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Determination of tungsten sources in the JET-ILW divertor by spectroscopic imaging in the presence of a strong plasma continuum

    Get PDF
    The identification of the sources of atomic tungsten and the measurement of their radiation distribution in front of all plasma-facing components has been performed in JET with the help of two digital cameras with the same two-dimensional view, equipped with interference filters of different bandwidths centred on theW I (400.88 nm) emission line. A new algorithm for the subtraction of the continuum radiation was successfully developed and is now used to evaluate the W erosion even in the inner divertor region where the strong recombination emission is dominating over the tungsten emission. Analysis of W sputtering and W redistribution in the divertor by video imaging spectroscopy with high spatial resolution for three different magnetic configurations was performed. A strong variation of the emission of the neutral tungsten in toroidal direction and corresponding W erosion has been observed. It correlates strongly with the wetted area with a maximal W erosion at the edge of the divertor tile

    Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor

    Get PDF
    Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E×B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6<Pcen_{cen}/Ptotal_{total}<0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components

    Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

    Get PDF
    The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an HMode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm3^{-3} at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E×B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten

    Improved ERO modelling of beryllium erosion at ITER upper first wall panel using JET-ILW and PISCES-B experience

    Get PDF
    ERO is a 3D Monte-Carlo impurity transport and plasma-surface interaction code. In 2011 it was applied for the ITER first wall (FW) life time predictions [1] (critical blanket module BM11). After that the same code was significantly improved during its application to existing fusion-relevant plasma devices: the tokamak JET equipped with an ITER-like wall and linear plasma device PISCES-B. This has allowed testing the sputtering data for beryllium (Be) and showing that the “ERO-min” fit based on the large (50%) deuterium (D) surface content is well suitable for plasma-wetted areas (D plasma). The improved procedure for calculating of the effective sputtering yields for each location along the plasma-facing surface using the recently developed semi-analytical sheath approach was validated. The re-evaluation of the effective yields for BM11 following the similar revisit of the JET data has indicated significant increase of erosion and motivated the current re-visit of ERO simulations

    Impact of fast ions on density peaking in JET : fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position rho(t) = 0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile

    First mirror test in JET for ITER: Complete overview after three ILW campaigns

    Get PDF
    The First Mirror Test for ITER has been carried out in JET with mirrors exposed during: (i) the third ILW campaign (ILW-3, 2015–2016, 23.33 h plasma) and (ii) all three campaigns, i.e. ILW-1 to ILW-3: 2011–2016, 63,52 h in total. All mirrors from main chamber wall show no significant changes of the total reflectivity from the initial value and the diffuse reflectivity does not exceed 3% in the spectral range above 500 nm. The modified layer on surface has very small amount of impurities such as D, Be, C, N, O and Ni. All mirrors from the divertor (inner, outer, base under the bulk W tile) lost reflectivity by 20–80% due to the beryllium-rich deposition also containing D, C, N, O, Ni and W. In the inner divertor N reaches 5×1017^{17} cm2^{-2}, W is up to 4.3×1017^{17} cm2^{-2}, while the content of Ni is the greatest in the outer divertor: 3.8×1017^{17} cm2^{-2}. Oxygen-18 used as the tracer in experiments at the end of ILW-3 has been detected at the level of 1.1×1016^{16} cm2^{-2}. The thickness of deposited layer is in the range of 90 nm to 900 nm. The layer growth rate in the base (2.7 pm s1^{-1}) and inner divertor is proportional to the exposure time when a single campaign and all three are compared. In a few cases, on mirrors located at the cassette mouth, flaking of deposits and erosion occurred
    corecore