13 research outputs found

    The Yin-Yang of the Green Fluorescent Protein:Impact on Saccharomyces cerevisiae stress resistance

    Get PDF
    International audienceAlthough fluorescent proteins are widely used as biomarkers (Yin), no study focuses on their influence on the microbial stress response. Here, the Green Fluorescent Protein (GFP) was fused to two proteins of interest in Saccharomyces cerevisiae. Pab1p and Sur7p, respectively involved in stress granules structure and in Can1 membrane domains. These were chosen since questions remain regarding the understanding of the behavior of S. cerevisiae facing different heat kinetics or oxidative stresses. The main results showed that Pab1p-GFP fluorescent mutant displayed a higher resistance than that of the wild type under a heat shock. Moreover, fluorescent mutants exposed to oxidative stresses displayed changes in the cultivability compared to the wild type strain. In silico approaches showed that the presence of the GFP did not influence the structure and so the functionality of the tagged proteins meaning that changes in yeast resistance were certainly related to GFP ROS-scavenging ability (Yang)

    La phytase de Debaryomyces castellii CBS 2923 (surexpression, propriétés catalytiques et structure)

    No full text
    Résumé en françaisRésumé en anglaisMONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Survie et/ou réactivation de microorganismes du sol sous hautes pressions gazeuses

    No full text
    National audienceLe sol constitue une rĂ©serve considĂ©rable de microorganismes reprĂ©sentatifs de nombreuses communautĂ©s cellulaires. Les recherches reposent sur l’hypothĂšse qu’il existe, dans les Ă©chantillons de sol, des communautĂ©s microbiennes adaptĂ©es Ă  des conditions physiques (pression, tempĂ©rature) trĂšs diffĂ©rentes de celles rencontrĂ©es dans nos laboratoires : soit parce que les conditions de milieu ont changĂ© (sol), soit parce que les conditions de prĂ©lĂšvement sont trĂšs diffĂ©rentes des conditions de culture (grands fonds marins). Dans cette optique, l’utilisation des hautes pressions gazeuses (200-1000 bars dans un premier temps) est envisagĂ©e afin d’essayer de rĂ©activer des microorganismes dormants que l’on ne sait pas cultiver. La dĂ©couverte et la culture de ces microorganismes pourrait permettre de dĂ©couvrir des formes microbiennes avec des adaptations qu’il serait possible d’utiliser Ă  des fins de connaissance sur la plasticitĂ© cellulaire ou d’exploiter industriellement certains Ă©lĂ©ments spĂ©cifiques du mĂ©tabolisme (enzymes, produits). L’objectif de la prĂ©sente Ă©tude est de valider l’utilisation de procĂ©dĂ©s originaux de culture sous Hautes Pressions. La maĂźtrise de ces procĂ©dĂ©s devrait permettre d’approcher les conditions optimales de culture par l’utilisation d’enceintes Hautes Pressions spĂ©cifiques : (1) Enceintes « aveugles » : elles permettent de placer des Ă©chantillons sous pression et de maintenir cette pression constante au cours de l’incubation mais ne permettent pas de visualiser la croissance des microorganismes lors du traitement hyperbare. Elles possĂšdent un volume utile d’environ 100 cm3 permettant l’introduction de 3 petites boĂźtes de Petri (4 cm de diamĂštre) et rĂ©sistent Ă  des pressions allant de 250 Ă  2000 bars selon le modĂšle de l’enceinte. (2) Enceintes « optiques » ou cellules de visualisation : elles permettent de visualiser les Ă©chantillons et de suivre, en temps rĂ©el, la croissance microbienne au cours du traitement hyperbare. Elles peuvent ĂȘtre utilisĂ©es pour rĂ©aliser des cultures sous pression gazeuse isostatique en milieu solide ou sous pression hydrostatique en milieu liquide. La prĂ©sence d’une double enveloppe permet de rĂ©guler la tempĂ©rature d’incubation. Cette cellule de visualisation peut rĂ©sister Ă  des pressions allant jusqu’à 4000 bars. Dans un premier temps, la levure Saccharomyces cerevisiae a Ă©tĂ© utilisĂ©e comme microorganisme modĂšle. Son taux de croissance a Ă©tĂ© mesurĂ© entre 1 et 500 bars dans ces deux types d’enceintes. Une Ă©tude comparative a Ă©tĂ© menĂ©e afin de retenir l’enceinte la plus adaptĂ©e au suivi de la croissance microbienne. Dans un second temps, des Ă©chantillons de diffĂ©rents sols (terrestre et marin) ont Ă©tĂ© rĂ©cupĂ©rĂ©s afin d’identifier les populations microbiennes piĂ©zotolĂ©rantes et/ou piĂ©zophiles Ă©ventuelles. Les Ă©chantillons de sol terrestre proviennent du domaine de BreteniĂšres (I.N.R.A., Dijon) et les Ă©chantillons de sol marin ont Ă©tĂ© prĂ©levĂ©s dans deux carottes profondes du Bassin Indien Central (OcĂ©an Indien) Ă  plus de 5000 m de profondeur et ont Ă©tĂ© gracieusement fournis par la carothĂšque ocĂ©anique du MusĂ©um National d’Histoire Naturelle

    High gas pressure survival/reactivation of soil microorganisms

    No full text
    International audienceDeep sea sediments constitute a considerable reserve of microorganisms belonging to different microbial communities. Our researches aimed to better understand cellular mechanisms related to cellular plasticity involved in resistance of such microbial communities to extreme conditions and more particularly to high level of pressure (> 50 MPa). Obviously, the first step is to isolate microorganisms present in deep sea sediments and then cultivate. The comparison of the cultivation of such microorganisms under atmospheric conditions and under pressure conditions will afford a possible reactivation of specific piezotolerants and/or piezophiles organisms from dormancy. The aim of the present study is to validate the use of original processes of culture under high gaseous pressures (50 MPa). (1) « Blind » chambers, of about 100 cm3, are designed to maintain microorganisms spread on solid medium contained in 3 small Petri Dishes (4 cm diameter) at 25-200 MPa. Observation in real time of colonies is not possible. (2) « Optical » or microscopic chambers are designed to resist up to 400 MPa and to visualize the microbial growth during hyperbaric treatment in real time. They can be used to cultivate and visualize microorganisms under gaseous isostatic pressure on solid medium or under hydrostatic pressure in liquid medium. The yeast Saccharomyces cerevisiae was used as a model of microorganism. Results show that its growth rate, measured between 1 and 50 MPa, decreased when the pressure level increased. The “optical” chamber is more adapted to the follow-up of the microbial growth because the growth rate can be calculated without decompression of the chamber and cells can be followed-up individually. The “blind” chamber is more adapted to cultivate samples in order to isolate piezotolerants and/or piezophiles microorganisms. Thus, they will be used to cultivate and isolate microorganisms present in deep sea sediments (-5000 m under Indian Ocean surface)

    La bioprĂ©servation: une stratĂ©gie d’avenir pour la conservation des aliments

    No full text
    N° d'article 201511121820La demande grandissante des consommateurs pour des produits alimentaires Ă  teneur rĂ©duite en conservateurs pousse les industriels de l’agroalimentaire Ă  rechercher des mĂ©thodes de conservation alternatives. Dans ce contexte, la bioprotection s’impose comme un procĂ©dĂ© Ă  fort potentiel. Cette technique consiste Ă  inoculer sur les aliments des cultures de bactĂ©ries protectrices. Celles-ci, par l’intermĂ©diaire de plusieurs mĂ©canismes, vont inhiber la croissance de bactĂ©ries pathogĂšnes et d’altĂ©ration telles que Listeria monocytogenes et Salmonella. Cependant, cette technique n’a pas d’effet sur les spores bactĂ©riennes. Ainsi, l’objet central du projet de recherche ANR BlacHP vise Ă  inactiver ces formes rĂ©sistantes, notamment en combinant la bioprĂ©servation avec un procĂ©dĂ© de traitement par hautes pressions hydrostatiques

    Extremely rapid acclimation of Escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming

    No full text
    International audienceThis study aimed to demonstrate that adequate slow heating rate allows two strains of Escherichia coli rapid acclimation to higher temperature than upper growth and survival limits known to be strain‐dependent. A laboratory (K12‐TG1) and an environmental (DPD3084) strain of E. coli were subjected to rapid (few seconds) or slow warming (1°C 12 h−1) in order to (re)evaluate upper survival and growth limits. The slow warming was applied from the ancestral temperature 37°C to total cell death 46–54°C: about 30 generations were propagated. Upper survival and growth limits for rapid warming (46°C) were lower than for slow warming (46–54°C). The thermal limit of survival for slow warming was higher for DPD3084 (50–54°C). Further experiments conducted on DPD3084, showed that mechanisms involved in this type of thermotolerance were abolished by a following cooling step to 37°C, which allowed to imply reversible mechanisms as acclimation ones. Acquisition of acclimation mechanisms was related to physical properties of the plasma membrane but was not inhibited by unavoidable appearance of aggregated proteins. In conclusion, E.coli could be rapidly acclimated within few generations over thermal limits described in the literature. Such a study led us to propose that rapid acclimation may give supplementary time to the species to acquire a stable adaptation through a random mutation

    Regioselective chemo-enzymatic syntheses of ferulate conjugates as chromogenic substrates for feruloyl esterases

    No full text
    International audienceGenerally, carbohydrate-active enzymes are studied using chromogenic substrates that provide quick and easy color-based detection of enzyme-mediated hydrolysis. In the case of feruloyl esterases, commercially available chromogenic ferulate derivatives are both costly and limited in terms of their experimental application. In this study, we describe solutions for these two issues, using a chemoenzymatic approach to synthesize different ferulate compounds. The overall synthetic routes towards commercially available 5-bromo-4-chloro-3-indolyl and 4-nitrophenyl O-5-feruloyl-α-l-arabinofuranosides 1a and 1b were significantly shortened (7-8 steps reduced to 4-6) and transesterification yields enhanced (from 46 to 73% for 1a and 47 to 86 % for 1b). This was achieved using enzymatic (immobilized Lipolase 100T from Thermomyces lanuginosus) transesterification of unprotected vinyl ferulate to the primary hydroxyl group of α‐l‐arabinofuranosides. Moreover, a novel feruloylated-butanetriol 4-nitrocatechol-1-yl analog 12, containing a cleavable hydroxylated linker was also synthesized in 29% overall yield in 3 steps (convergent synthesis). The latter route combined regioselective functionalization of 4-nitrocatechol and enzymatic transferuloylation. The use of 12 as a substrate to characterize type A feruloyl esterase from Aspergillus niger reveals the advantages of this substrate for the characterizations of feruloyl esterases

    Management of Listeria monocytogenes on Surfaces via Relative Air Humidity: Key Role of Cell Envelope

    No full text
    International audienceAlthough relative air humidity (RH) strongly influences microbial survival, its use for fighting surface pathogens in the food industry has been inadequately considered. We asked whether RH control could destroy Listeria monocytogenes EGDe by envelope damage. The impact of dehydration in phosphate-buffered saline (PBS) at 75%, 68%, 43% and 11% RH on the bacterial envelope was investigated using flow cytometry and atomic force microscopy. Changes after rehydration in the protein secondary structure and peptidoglycan were investigated by infrared spectroscopy. Complementary cultivability measurements were performed by running dehydration–rehydration with combinations of NaCl (3–0.01%), distilled water, city water and PBS. The main results show that cell membrane permeability and cell envelope were greatly altered during dehydration in PBS at 68% RH followed by rapid rehydration. This damage led cells to recover only 67% of their initial volume after rehydration. Moreover, the most efficient way to destroy cells was dehydration and rehydration in city water. Our study indicates that rehydration of dried, sullied foods on surfaces may improve current cleaning procedures in the food industry
    corecore