51 research outputs found

    Partially ordered secretaries

    Get PDF
    The elements of a finite nonempty partially ordered set are exposed at independent uniform times in [0,1][0,1] to a selector who, at any given time, can see the structure of the induced partial order on the exposed elements. The selector's task is to choose online a maximal element. This generalizes the classical linear order secretary problem, for which it is known that the selector can succeed with probability 1/e1/e and that this is best possible. We describe a strategy for the general problem that achieves success probability 1/e1/e for an arbitrary partial order.Comment: 5 page

    Topics in algorithmic, enumerative and geometric combinatorics

    Get PDF
    This thesis presents five papers, studying enumerative and extremal problems on combinatorial structures. The first paper studies Forman's discrete Morse theory in the case where a group acts on the underlying complex. We generalize the notion of a Morse matching, and obtain a theory that can be used to simplify the description of the G-homotopy type of a simplicial complex. As an application, we determine the S_2xS_{n-2}-homotopy type of the complex of non-connected graphs on n nodes. In the introduction, connections are drawn between the first paper and the evasiveness conjecture for monotone graph properties. In the second paper, we investigate Hansen polytopes of split graphs. By applying a partitioning technique, the number of nonempty faces is counted, and in particular we confirm Kalai's 3^d-conjecture for such polytopes. Furthermore, a characterization of exactly which Hansen polytopes are also Hanner polytopes is given. We end by constructing an interesting class of Hansen polytopes having very few faces and yet not being Hanner. The third paper studies the problem of packing a pattern as densely as possible into compositions. We are able to find the packing density for some classes of generalized patterns, including all the three letter patterns. In the fourth paper, we present combinatorial proofs of the enumeration of derangements with descents in prescribed positions. To this end, we consider fixed point lambda-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler's difference tables. We also prove that except in a trivial special case, the event that pi has descents in a set S of positions is positively correlated with the event that pi is a derangement, if pi is chosen uniformly in S_n. The fifth paper solves a partially ordered generalization of the famous secretary problem. The elements of a finite nonempty partially ordered set are exposed in uniform random order to a selector who, at any given time, can see the relative order of the exposed elements. The selector's task is to choose online a maximal element. We describe a strategy for the general problem that achieves success probability at least 1/e for an arbitrary partial order, thus proving that the linearly ordered set is at least as difficult as any other instance of the problem. To this end, we define a probability measure on the maximal elements of an arbitrary partially ordered set, that may be interesting in its own right

    On the Combinatorics of Locally Repairable Codes via Matroid Theory

    Full text link
    This paper provides a link between matroid theory and locally repairable codes (LRCs) that are either linear or more generally almost affine. Using this link, new results on both LRCs and matroid theory are derived. The parameters (n,k,d,r,δ)(n,k,d,r,\delta) of LRCs are generalized to matroids, and the matroid analogue of the generalized Singleton bound in [P. Gopalan et al., "On the locality of codeword symbols," IEEE Trans. Inf. Theory] for linear LRCs is given for matroids. It is shown that the given bound is not tight for certain classes of parameters, implying a nonexistence result for the corresponding locally repairable almost affine codes, that are coined perfect in this paper. Constructions of classes of matroids with a large span of the parameters (n,k,d,r,δ)(n,k,d,r,\delta) and the corresponding local repair sets are given. Using these matroid constructions, new LRCs are constructed with prescribed parameters. The existence results on linear LRCs and the nonexistence results on almost affine LRCs given in this paper strengthen the nonexistence and existence results on perfect linear LRCs given in [W. Song et al., "Optimal locally repairable codes," IEEE J. Sel. Areas Comm.].Comment: 48 pages. Submitted for publication. In this version: The text has been edited to improve the readability. Parameter d for matroids is now defined by the use of the rank function instead of the dual matroid. Typos are corrected. Section III is divided into two parts, and some numberings of theorems etc. have been change

    ff-vector inequalities for order and chain polytopes

    Full text link
    The order and chain polytopes are two 0/1-polytopes constructed from a finite poset. In this paper, we study the ff-vectors of these polytopes. We investigate how the order and chain polytopes behave under disjoint unions and ordinal sums of posets, and how the ff-vectors of these polytopes are expressed in terms of ff-vectors of smaller polytopes. Our focus is on comparing the ff-vectors of the order and chain polytope built from the same poset. In our main theorem we prove that for a family of posets built inductively by taking disjoint unions and ordinal sums of posets, for any poset P\mathcal{P} in this family the ff-vector of the order polytope of P\mathcal{P} is component-wise at most the ff-vector of the chain polytope of P\mathcal{P}.Comment: Fixed typos, slight change to terminology, added one referenc

    Enumeration of derangements with descents in prescribed positions

    Get PDF
    We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive several explicit formulas. To this end, we consider fixed point λ\lambda-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler's difference tables. We also prove that except in a trivial special case, if a permutation π\pi is chosen uniformly among all permutations on nn elements, the events that π\pi has descents in a set SS of positions, and that π\pi is a derangement, are positively correlated
    corecore