1,146 research outputs found

    Low-Degree Spanning Trees of Small Weight

    Get PDF
    The degree-d spanning tree problem asks for a minimum-weight spanning tree in which the degree of each vertex is at most d. When d=2 the problem is TSP, and in this case, the well-known Christofides algorithm provides a 1.5-approximation algorithm (assuming the edge weights satisfy the triangle inequality). In 1984, Christos Papadimitriou and Umesh Vazirani posed the challenge of finding an algorithm with performance guarantee less than 2 for Euclidean graphs (points in R^n) and d > 2. This paper gives the first answer to that challenge, presenting an algorithm to compute a degree-3 spanning tree of cost at most 5/3 times the MST. For points in the plane, the ratio improves to 3/2 and the algorithm can also find a degree-4 spanning tree of cost at most 5/4 times the MST.Comment: conference version in Symposium on Theory of Computing (1994

    Optimisation of quantum Monte Carlo wave function: steepest descent method

    Full text link
    We have employed the steepest descent method to optimise the variational ground state quantum Monte Carlo wave function for He, Li, Be, B and C atoms. We have used both the direct energy minimisation and the variance minimisation approaches. Our calculations show that in spite of receiving insufficient attention, the steepest descent method can successfully minimise the wave function. All the derivatives of the trial wave function respect to spatial coordinates and variational parameters have been computed analytically. Our ground state energies are in a very good agreement with those obtained with diffusion quantum Monte Carlo method (DMC) and the exact results.Comment: 13 pages, 3 eps figure

    Approximating the Minimum Equivalent Digraph

    Full text link
    The MEG (minimum equivalent graph) problem is, given a directed graph, to find a small subset of the edges that maintains all reachability relations between nodes. The problem is NP-hard. This paper gives an approximation algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its analysis are based on the simple idea of contracting long cycles. (This result is strengthened slightly in ``On strongly connected digraphs with bounded cycle length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms (1994

    Magnetic Properties of Undoped C60C_{60}

    Full text link
    The Heisenberg antiferromagnet, which arises from the large UU Hubbard model, is investigated on the C60C_{60} molecule and other fullerenes. The connectivity of C60C_{60} leads to an exotic classical ground state with nontrivial topology. We argue that there is no phase transition in the Hubbard model as a function of U/tU/t, and thus the large UU solution is relevant for the physical case of intermediate coupling. The system undergoes a first order metamagnetic phase transition. We also consider the S=1/2 case using perturbation theory. Experimental tests are suggested.Comment: 12 pages, 3 figures (included

    Synchronization time in a hyperbolic dynamical system with long-range interactions

    Full text link
    We show that the threshold of complete synchronization in a lattice of coupled non-smooth chaotic maps is determined by linear stability along the directions transversal to the synchronization subspace. We examine carefully the sychronization time and show that a inadequate observation of the system evolution leads to wrong results. We present both careful numerical experiments and a rigorous mathematical explanation confirming this fact, allowing for a generalization involving hyperbolic coupled map lattices.Comment: 22 pages (preprint format), 4 figures - accepted for publication in Physica A (June 28, 2010

    Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems

    Get PDF
    We study the effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems. For this purpose, the Gierer-Meinhardt model of pattern formation is considered. The cases we study are: (i)randomness in the underlying lattice structure, (ii)the case in which there is a probablity p that at a lattice site both reaction and diffusion occur, otherwise there is only diffusion and lastly, the effect of (iii) anisotropic and (iv) random diffusion coefficients on the formation of Turing patterns. The general conclusion is that the Turing mechanism of pattern formation is fairly robust in the presence of randomness and anisotropy.Comment: 11 pages LaTeX, 14 postscript figures, accepted in Phys. Rev.

    Balancing Minimum Spanning and Shortest Path Trees

    Full text link
    This paper give a simple linear-time algorithm that, given a weighted digraph, finds a spanning tree that simultaneously approximates a shortest-path tree and a minimum spanning tree. The algorithm provides a continuous trade-off: given the two trees and epsilon > 0, the algorithm returns a spanning tree in which the distance between any vertex and the root of the shortest-path tree is at most 1+epsilon times the shortest-path distance, and yet the total weight of the tree is at most 1+2/epsilon times the weight of a minimum spanning tree. This is the best tradeoff possible. The paper also describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993

    Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures

    Full text link
    The electronic structure of C_(4N+2) carbon rings exhibits competing many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls instability at large sizes. This leads to possible ground state structures with aromatic, bond angle or bond length alternated geometry. Highly accurate quantum Monte Carlo results indicate the existence of a crossover between C_10 and C_14 from bond angle to bond length alternation. The aromatic isomer is always a transition state. The driving mechanism is the second-order Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure

    Vibrational signatures for low-energy intermediate-sized Si clusters

    Get PDF
    We report low-energy locally stable structures for the clusters Si20 and Si21. The structures were obtained by performing geometry optimizations within the local density approximation. Our calculated binding energies for these clusters are larger than any previously reported for this size regime. To aid in the experimental identification of the structures, we have computed the full vibrational spectra of the clusters, along with the Raman and IR activities of the various modes using a recently developed first-principles technique. These represent, to our knowledge, the first calculations of Raman and IR spectra for Si clusters of this size
    corecore