103 research outputs found

    Teaching Matters: An Integrative Lesson on Searching, Tracking Citations, and Evaluating a Scholarly Article

    Get PDF
    This column describes a lesson in a credit-bearing information literacy course, focusing on evaluation of a scholarly article and finding citing references

    A New Way to Manage Uncataloged Materials: A Case Study from Moving the University of Nevada, Reno’s Federal Depository Collection

    Get PDF
    In 2008, the University of Nevada, Reno Library moved into a new building, the Mathewson-IGT Knowledge Center. As part of this move, approximately half of the library’s print collections were moved into the building’s automated storage and retrieval system; a substantial portion of these materials were federal depository materials. This case study describes how cataloging and government documents staff at the University of Nevada, Reno collaborated to achieve intellectual and physical control over a huge, largely uncataloged government documents collection destined for automated storage. More than 9,000 linear feet of uncataloged government documents had to be placed into an automated storage system that requires catalog records for all stored items. To accommodate uncataloged documents, staff devised a way to create bulk catalog records, store these materials efficiently, and provide user access. The authors explain how this project was planned and executed as part of the library move, and then assess the success of the project and its impact on public and technical services operations after a year of working with the new system. The impact on public access in moving this collection is particularly significant in light of the library’s service mandate as a regional federal depository

    An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations

    Get PDF
    In Caenorhabdltls elegans, the dauer pheromone, which consists of a number of derivatives of the 3,6-dideoxysugar ascarylose, is the primary cue for entry into the stress-resistant, nonaging dauer larval stage. Here, using activity-guided fractionation and NMR-based structure elucidation, a structurally novel, indole-3-carboxyl-modified ascaroside is identified that promotes dauer formation at low nanomolar concentrations but inhibits dauer formation at higher concentrations. © 2009 American Chemical Society

    A Novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode heterorhabditis bacteriophora

    Get PDF
    Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species. © 2012 American Chemical Society

    Approaches for Sample Characterization and Lithography with Nanoparticles using Modes of Scanning Probe Microscopy

    Get PDF
    Measurement and imaging modes of scanning probe microscopy (SPM) have been routinely applied for characterizing systems of nanoparticles; however the evolution of fabrication methods to prepare arrangements of nanoparticles remains a challenge. Reproducible fabrication of surface structures which integrate nanoparticles within ultra-small patterns will require innovative approaches to achieve high throughput and precision. Strategies for nanoscale lithography have been introduced for preparing defined arrangements of nanoparticles on surfaces based on physical or chemical interactions. For example, physisorption was employed for attaching nanoparticles based on colloidal lithography and site-directed assembly. Microfabricated atomic force microscope (AFM) tips with capillary channels have been used to pattern nanoparticles through electrostatic interactions. Specific chemical interactions can be designed for patterning nanoparticles with dip-pen nanolithography and SPM-based fabrication. Studies with nanoparticles are reviewed, which have applied either in situ and ex situ approaches for imaging and measurements using modes of SPM. The imaging principle for contact and tapping modes are described with example studies of nanoparticle patterns. The SPM modes for measuring physical properties (e.g. magnetism, softness, conductance) using force modulation microscopy (FMM), magnetic force microscopy (MFM), magnetic sample modulation (MSM), and conductive probe AFM are described for selected studies of lithography with nanoparticles. Strategies for patterning nanoparticles using lithography modes of nanoshaving, dip-pen nanolithography, and tip-induced oxidation have been reported for a range of nanoparticle systems. Applications for nanotechnology will require the integration of nanoparticles within engineered surface architectures. Stable, organized arrangements of nanoparticles with robust chemical/physical attachment to surfaces will be needed for applications, to fully gain advantages of the characteristic quantum properties of nanoparticles

    Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations

    Get PDF
    Postoperative pulmonary complications (PPCs) occur frequently and are associated with substantial morbidity and mortality. Evidence suggests that reduction of PPCs can be accomplished by using lung-protective ventilation strategies intraoperatively, but a consensus on perioperative management has not been established. We sought to determine recommendations for lung protection for the surgical patient at an international consensus development conference. Seven experts produced 24 questions concerning preoperative assessment and intraoperative mechanical ventilation for patients at risk of developing PPCs. Six researchers assessed the literature using questions as a framework for their review. The modified Delphi method was utilised by a team of experts to produce recommendations and statements from study questions. An expert consensus was reached for 22 recommendations and four statements. The following are the highlights: (i) a dedicated score should be used for preoperative pulmonary risk evaluation; and (ii) an individualised mechanical ventilation may improve the mechanics of breathing and respiratory function, and prevent PPCs. The ventilator should initially be set to a tidal volume of 6-8 ml kg-1 predicted body weight and positive end-expiratory pressure (PEEP) 5 cm H2O. PEEP should be individualised thereafter. When recruitment manoeuvres are performed, the lowest effective pressure and shortest effective time or fewest number of breaths should be used. ispartof: BJA: British Journal of Anaesthesia vol:123 issue:6 pages:898-913 ispartof: location:England status: Published onlin

    Application of visible-light photosensitization to form alkyl-radical-derived thin films on gold

    Get PDF
    Visible-light irradiation of phthalimide esters in the presence of the photosensitizer [Ru(bpy)3]2+ and the stoichiometric reducing agent benzyl nicotinamide results in the formation of alkyl radicals under mild conditions. This approach to radical generation has proven useful for the synthesis of small organic molecules. Herein, we demonstrate for the first time the visible-light photosensitized deposition of robust alkyl thin films on Au surfaces using phthalimide esters as the alkyl radical precursors. In particular, we combine visible-light photosensitization with particle lithography to produce nanostructured thin films, the thickness of which can be measured easily using AFM cursor profiles. Analysis with AFM demonstrated that the films are robust and resistant to mechanical force while contact angle goniometry suggests a multilayered and disordered film structure. Analysis with IRRAS, XPS, and TOF SIMS provides further insights
    corecore