224 research outputs found

    Role of Protective Relaying in the Smart Grid

    Get PDF
    This paper discusses the role of protective relaying in a Smart Grid. It outlines the definition, attributes, and benefits of a Smart Grid. The role that protective relays can play in implementing Smart Grid functionality and the impact that a Smart Grid design may have on modern protective relays is discussed. Specific examples of Smart Grid applications that may be implemented using modern protective relays and other intelligent electronic devices are provided

    Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation?

    Get PDF
    Genetic variants contribute to normal variation of iron-related traits and may also cause clinical syndromes of iron deficiency or excess. Iron overload and deficiency can adversely affect human health. For example, elevated iron storage is associated with increased diabetes risk, although mechanisms are still being investigated. We conducted the first genome-wide association study of serum iron, total iron binding capacity (TIBC), transferrin saturation, and ferritin in a Hispanic/Latino cohort, the Hispanic Community Health Study/Study of Latinos (>12 000 participants) and also assessed the generalization of previously known loci to this population. We then evaluated whether iron-associated variants were associated with diabetes and glycemic traits. We found evidence for a novel association between TIBC and a variant near the gene for protein phosphatase 1, regulatory subunit 3B (PPP1R3B; rs4841132, β = -0.116, P = 7.44 × 10-8). The effect strengthened when iron deficient individuals were excluded (β = -0.121, P = 4.78 × 10-9). Ten of sixteen variants previously associated with iron traits generalized to HCHS/SOL, including variants at the transferrin (TF), hemochromatosis (HFE), fatty acid desaturase 2 (FADS2)/myelin regulatory factor (MYRF), transmembrane protease, serine 6 (TMPRSS6), transferrin receptor (TFR2), N-acetyltransferase 2 (arylamine N-acetyltransferase) (NAT2), ABO blood group (ABO), and GRB2 associated binding protein 3 (GAB3) loci. In examining iron variant associations with glucose homeostasis, an iron-raising variant of TMPRSS6 was associated with lower HbA1c levels (P = 8.66 × 10-10). This association was attenuated upon adjustment for iron measures. In contrast, the iron-raising allele of PPP1R3B was associated with higher levels of fasting glucose (P = 7.70 × 10-7) and fasting insulin (P = 4.79 × 10-6), but these associations were not attenuated upon adjustment for TIBC-so iron is not likely a mediator. These results provide new genetic information on iron traits and their connection with glucose homeostasis

    Obesity Duration, Severity, and Distribution Trajectories and Cardiovascular Disease Risk in the Atherosclerosis Risk in Communities Study

    Get PDF
    BACKGROUND: Research examining the role of obesity in cardiovascular disease (CVD) often fails to adequately consider heterogeneity in obesity severity, distribution, and duration. METHODS AND RESULTS: We here use multivariate latent class mixed models in the biracial Atherosclerosis Risk in Communities study (N=14 514; mean age=54 years; 55% female) to associate obesity subclasses (derived from body mass index, waist circumference, self-reported weight at age 25, tricep skinfold, and calf circumference across up to four triennial visits) with total mortality, incident CVD, and CVD risk factors. We identified four obesity subclasses, summarized by their body mass index and waist circumference slope as decline (4.1%), stable/slow decline (67.8%), moderate increase (24.6%), and rapid increase (3.6%) subclasses. Compared with participants in the stable/slow decline subclass, the decline subclass was associated with elevated mortality (hazard ratio [HR] 1.45, 95% CI 1.31, 1.60, P<0.0001) and with heart failure (HR 1.41, 95% CI 1.22, 1.63, P<0.0001), stroke (HR 1.53, 95% CI 1.22, 1.92, P=0.0002), and coronary heart disease (HR 1.36, 95% CI 1.14, 1.63, P=0.0008), adjusting for baseline body mass index and CVD risk factor profile. The moderate increase latent class was not associated with any significant differences in CVD risk as compared to the stable/slow decline latent class and was associated with a lower overall risk of mortality (HR 0.85, 95% CI 0.80, 0.90, P<0.0001), despite higher body mass index at baseline. The rapid increase latent class was associated with a higher risk of heart failure versus the stable/slow decline latent class (HR 1.34, 95% CI 1.10, 1.62, P=0.004). CONCLUSIONS: Consideration of heterogeneity and longitudinal changes in obesity measures is needed in clinical care for a more precision-oriented view of CVD risk

    Super interactive promoters provide insight into cell type-specific regulatory networks in blood lineage cell types

    Get PDF
    Existing studies of chromatin conformation have primarily focused on potential enhancers interacting with gene promoters. By contrast, the interactivity of promoters per se, while equally critical to understanding transcriptional control, has been largely unexplored, particularly in a cell type-specific manner for blood lineage cell types. In this study, we leverage promoter capture Hi-C data across a compendium of blood lineage cell types to identify and characterize cell type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for relevant blood cell traits than PIRs of non-SIPs. Moreover, PIRs of cell-type-specific SIPs show enriched heritability of relevant blood cell trait (s), and are more enriched with GWAS variants associated with blood cell traits compared to PIRs of non-SIPs. Further, SIP genes tend to express at a higher level in the corresponding cell type. Importantly, SIP subnetworks incorporating cell-type-specific SIPs and ATAC-seq peaks help interpret GWAS variants. Examples include GWAS variants associated with platelet count near the megakaryocyte SIP gene EPHB3 and variants associated lymphocyte count near the native CD4 T-Cell SIP gene ETS1. Interestingly, around 25.7% ~ 39.6% blood cell traits GWAS variants residing in SIP PIR regions disrupt transcription factor binding motifs. Importantly, our analysis shows the potential of using promoter-centric analyses of chromatin spatial organization data to identify biologically important genes and their regulatory regions

    Epigenome-Wide Association Study of Kidney Function Identifies Trans-Ethnic and Ethnic-Specific Loci

    Get PDF
    BACKGROUND: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. METHODS: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses. RESULTS: We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development. CONCLUSIONS: We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context

    Mosaic Chromosomal alterations in Blood across ancestries Using Whole-Genome Sequencing

    Get PDF
    Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis

    Determinants of Mosaic Chromosomal alteration Fitness

    Get PDF
    Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI toPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (

    Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci

    Get PDF
    BACKGROUND: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. METHODS: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses. RESULTS: We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development. CONCLUSIONS: We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context
    corecore