546 research outputs found
Bivalve taxonomic diversity throughout the Italian Pliocene as a tool for climatic-oceanographic and stratigraphic inferences
The state of research on the evolution of marine bivalve taxonomic diversity of the Mediterranean Pliocene is analysed. The following
assertions are discussed: 1) The Early Pliocene malacofauna is characterized by a high number of warm-water taxa and a high
taxonomic diversity with respect to that of the present time. 2) The first appreciable extinction event in the Mediterranean Pliocene
approximates or just follows the FO of Globorotalia bononiensis. 3) The second appreciable extinction event is between the LAD
of Discoaster tamalis and the LAD of Discoaster surculus . 4) A third minor extinction event is penecontemporaneous with the FO
of Globorotalia inflaia.
Taking into account the available data on the Pliocene extinction events it has been possible to distinguish 4 different molluscan
units with different climatic-oceanographic significance
Electron spin resonance - thermoluminescence studies on irradiated drugs and excipients
Issu de : 12th International Meeting on Radiation Processing (IMRP-12), AVIGNON, FRANCE, MAR 25-30, 2001International audienceThe methods (ESR, TL, GPC) developed to prove whether or not a foodstuff has been irradiated can be used to get the same proof in case of an irradiation treatment of drugs, excipients and cosmetic products
Stealth and equiluminous materials for scattering cancellation and wave diffusion
We report a procedure to design 2-dimensional acoustic structures with
prescribed scattering properties. The structures are designed from targeted
properties in the reciprocal space so that their structure factors, i.e., their
scattering patterns under the Born approximation, exactly follow the desired
scattering properties for a set of wavelengths. The structures are made of a
distribution of rigid circular cross-sectional cylinders embedded in air. We
demonstrate the efficiency of the procedure by designing 2-dimensional stealth
acoustic materials with broadband backscattering suppression independent of the
angle of incidence and equiluminous acoustic materials exhibiting broadband
scattering of equal intensity also independent of the angle of incidence. The
scattering intensities are described in terms of both single and multiple
scattering formalisms, showing excellent agreement with each other, thus
validating the scattering properties of each material
Stealth and equiluminous materials for scattering cancellation and wave diffusion
[EN] We report a procedure to design two-dimensional acoustic structures with prescribed scattering properties. The structures are designed from targeted properties in the reciprocal space so that their structure factors, i.e. their scattering patterns under the Born approximation, exactly follow the desired scattering properties for a set of wavelengths. The structures are made of a distribution of rigid circular cross-sectional cylinders embedded in air. We demonstrate the efficiency of the procedure by designing two-dimensional stealth acoustic materials with broadband back-scattering suppression independent of the angle of incidence and equiluminous acoustic materials exhibiting broadband scattering of equal intensity also independent of the angle of incidence. The scattering intensities are described in terms of both single and multiple scattering formalisms, showing excellent agreement with each other, thus validating the scattering properties of each material.This work has been funded by the project Conseil Regional des Pays de la Loire HYPERMETA under the program Etoiles Montantes of the Region Pays de la Loire, by the project Agence Nationale de la Recherche ANR-RGC METARoom [grant number (ANR-18-CE08-0021)] and by the project PID2020112759GB-I00 of the Ministerio de Ciencia e Innovacion.Kuznetsova, S.; Groby, JP.; García-Raffi, LM.; Romero-García, V. (2021). Stealth and equiluminous materials for scattering cancellation and wave diffusion. Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2021.194863
Contact of Single Asperities with Varying Adhesion: Comparing Continuum Mechanics to Atomistic Simulations
Atomistic simulations are used to test the equations of continuum contact
mechanics in nanometer scale contacts. Nominally spherical tips, made by
bending crystals or cutting crystalline or amorphous solids, are pressed into a
flat, elastic substrate. The normal displacement, contact radius, stress
distribution, friction and lateral stiffness are examined as a function of load
and adhesion. The atomic scale roughness present on any tip made of discrete
atoms is shown to have profound effects on the results. Contact areas, local
stresses, and the work of adhesion change by factors of two to four, and the
friction and lateral stiffness vary by orders of magnitude. The microscopic
factors responsible for these changes are discussed. The results are also used
to test methods for analyzing experimental data with continuum theory to
determine information, such as contact area, that can not be measured directly
in nanometer scale contacts. Even when the data appear to be fit by continuum
theory, extracted quantities can differ substantially from their true values
Analytical model to predict the effect of a finite impedance surface on the propagation properties of a 2D Sonic Crystal
The use of Sonic Crystals as environmental noise barriers has certain
advantages from the acoustical and the constructive point of view with regard
to conventional ones. One aspect do not studied yet is the acoustic interaction
between the Sonic Crystals and the ground due to, up to now, this latter is not
included in the analytical models used to characterize these Sonic Crystals. We
present here an analytical model, based on multiple scattering theory, to study
this interaction considering the ground as a finite impedance surface. Using
this model we have obtained interesting conclusions that allow to design more
effectively noise screens based on Sonic Crystals. The obtained results have
been compared with experimental and numerical, finding a good agreement between
them
Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications
Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm.
Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes
Site 1216
Site 1216 (21°27.16´N, 139°28.79´W; 5152 meters below sea level [mbsl]; Fig. F1) is situated in abyssal hill topography south of the Molokai Fracture Zone and two small associated unnamed parasitic fracture zones (Fig. F2). Based on magnetic lineations, Site 1216 appears to be situated on normal ocean crust formed during the C25r magnetic anomaly (~57 Ma; Atwater and Severinghaus, 1989). Site 1216 was chosen for drilling because it is near the thickest section of lower Eocene sediments along the 56-Ma transect, which was based upon the seismic stratigraphy of seismic reflection data acquired on site survey cruise EW9709 during transits between the proposed drill sites (Lyle et al., this volume; Moore et al., 2002). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199, being largely based on two Deep Sea Drilling Project (DSDP) drill sites (40 and 41) and piston core data (EW9709-3PC) from ~1.5° in latitude to the south. Based on data from these drill sites, we expected the sedimentary sequence at Site 1216 to comprise red clays (a mixture of wind-blown dust and authigenic precipitates) overlying a biogenic sediment section composed of an upper middle Eocene radiolarian ooze and lower carbonate ooze deposited when the site was near the ridge crest in the late Paleocene and early Eocene.
The broad paleoceanographic objectives of drilling the sedimentary sequence anticipated at Site 1216 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian-dust composition and flux through time (red clays) and (2) to help define the latitudinal extent, composition, and mass accumulation of plankton communities in the north equatorial Pacific region thereby constraining ocean circulation patterns and the extent of the equatorial high-productivity belt in the Eocene ocean.
Results from Site 1216 will also provide important information to test whether there was significant motion of the Hawaiian hotspot with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location of Site 1216 based upon a hotspot reference frame (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) is about 9°N, 108°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator
Site 1220
Site 1220 (10°10.600´N, 142°45.503´W; 5218 meters below sea level (mbsl); Fig. F1) forms a southerly component of the 56-Ma transect drilled during Leg 199. It is situated about midway between the Clipperton and Clarion Fracture Zones in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1220 to be equivalent to Chron C25n (~56 Ma; Cande et al., 1989), slightly older than at Site 1219. At the outset of drilling at Site 1220, our estimate for total sediment depth was ~225 meters below seafloor (mbsf) (Fig. F2).
Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles), Site 1220 should have been located ~3° south of the equator at 56 Ma and in an equatorial position at 40 Ma. Thus, Site 1220 should have been situated underneath the South Equatorial Current in the early Eocene. A nearby piston core (EW9709-13PC) taken during the site survey cruise recovered >16 m of red clay, with the base of the core dated as middle-early Miocene on the basis of radiolarian biostratigraphy (Lyle, 2000).
Site 1220 will be used to study equatorial ocean circulation from the late Paleocene through the late Eocene during the early Cenozoic thermal maximum. Sediment records from this site will help to define the calcite compensation depth (CCD) and lysocline during the Paleocene-Eocene and Eocene-Oligocene transitions. In this and other respects, Site 1220 will act as an interesting analog to Site 1218. Both sites are thought to have been located on the equator at ~40 Ma, but the older crustal age anticipated at Site 1220 dictates a greater paleowater depth than for contemporaneous sediments accumulating at Site 1218
Site 1222
Site 1222 (13°48.98´N, 143°53.35´W; 4989 meters below sea level [mbsl]; Fig. F1) forms a south-central component of the 56-Ma transect drilled during Leg 199 and is situated ~2° south of the Clarion Fracture Zone in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1222 to be equivalent to Chron C25r or Chron C25n (~56-57 Ma) (Cande et al., 1989), which is slightly older than at Site 1219. At the outset of drilling at Site 1222, our estimate for total sediment thickness was ~115 m (Fig. F2).
Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) Site 1222 should have been located ~1° north of the equator at 56 Ma and ~4°N at 40 Ma. A nearby gravity core (EW9709-17GC), taken during the site survey cruise, recovered >5 m of red clay with a late-middle Miocene age on the basis of radiolarian biostratigraphy (Lyle, 2000). Deep Sea Drilling Project (DSDP) Site 42 located ~4° east of Site 1222, was not drilled to basement but contains a thin sedimentary section (~100 m thick) of upper Oligocene nannofossil ooze through middle Eocene radiolarian nannofossil ooze. In turn, DSDP Site 162 lies ~1° north of DSDP Site 42 and is situated on young crust (49 Ma) that contains ~150 m of clayey radiolarian and nannofossil oozes of early Oligocene-middle Eocene age.
Site 1222 will be used to study the position of the Intertropical Convergence Zone in the late Eocene and Oligocene, to sample late Paleocene and early Eocene sediments in the central tropical Pacific Ocean, and to help determine whether or not there has been significant southward movement of the hotspots with respect to the spin axis prior to 40 Ma
- …