17 research outputs found

    The eICU Collaborative Research Database, a freely available multi-center database for critical care research

    Get PDF
    Critical care patients are monitored closely through the course of their illness. As a result of this monitoring, large amounts of data are routinely collected for these patients. Philips Healthcare has developed a telehealth system, the eICU Program, which leverages these data to support management of critically ill patients. Here we describe the eICU Collaborative Research Database, a multi-center intensive care unit (ICU)database with high granularity data for over 200,000 admissions to ICUs monitored by eICU Programs across the United States. The database is deidentified, and includes vital sign measurements, care plan documentation, severity of illness measures, diagnosis information, treatment information, and more. Data are publicly available after registration, including completion of a training course in research with human subjects and signing of a data use agreement mandating responsible handling of the data and adhering to the principle of collaborative research. The freely available nature of the data will support a number of applications including the development of machine learning algorithms, decision support tools, and clinical research

    Clinical Implications of Mutations at Reverse Transcriptase Codon 135 on Response to NNRTI-Based Therapy

    Get PDF
    To evaluate the impact of mutations at reverse transcriptase codon 135 on treatment outcomes in patients receiving NNRTI-based antiretroviral therapy, a total of 68 patients (30 with and 38 without baseline mutations at codon 135) were evaluated. Median increases in CD4 counts were 135 and 90 cells/mm3 (p=0.32), virologic suppression (HIV RNA < 400 copies/mL) was achieved in 16 (53%) and 16 (42%) patients (p=0.50), while NNRTI resistance was detected in 10/14 (71%) and 16/22 (73%) in patients with and without mutations at codon 135, respectively. Patients who experienced a virologic breakthrough and had a baseline mutation at codon 135 were more likely to evolve a single NNRTI resistance mutation (8/14 vs 4/22, p=0.029) but less likely to evolve multiple NNRTI resistance mutations (2/14 vs 12/22, p = 0.033). Mutations at codon 135 do not affect response rates, but affect the pattern of development of NNRTI resistance mutations. This has important implications for the subsequent use of newer NNRTIs such as etravirine in salvage therapy

    Data from: tableone: an open source Python package for producing summary statistics for research papers

    No full text
    Objectives: In quantitative research, understanding basic parameters of the study population is key for interpretation of the results. As a result, it is typical for the first table ("Table 1") of a research paper to include summary statistics for the study data. Our objectives are twofold. First, we seek to provide a simple, reproducible method for providing summary statistics for research papers in the Python programming language. Second, we seek to use the package to improve the quality of summary statistics reported in research papers. Materials and Methods: The tableone package is developed following good practice guidelines for scientific computing and all code is made available under a permissive MIT License. A testing framework runs on a continuous integration server, helping to maintain code stability. Issues are tracked openly and public contributions are encouraged. Results: The tableone software package automatically compiles summary statistics into publishable formats such as CSV, HTML, and LaTeX. An executable Jupyter Notebook demonstrates application of the package to a subset of data from the MIMIC-III database. Tests such as Tukey’s rule for outlier detection and Hartigan’s Dip Test for modality are computed to highlight any potential issues in summarizing the data. Discussion and Conclusion: We present open source software for researchers to facilitate carrying out reproducible studies in Python, an increasingly popular language in scientific research. The toolkit is intended to mature over time with community feedback and input. Development of a common tool for summarizing data may help to promote good practice when used as a supplement to existing guidelines and recommendations. We encourage use of tableone alongside other methods of descriptive statistics and, in particular, visualization to ensure appropriate data handling. We also suggest seeking guidance from a statistician when using tableone for a research study, especially prior to submitting the study for publication

    How is the Doctor Feeling? ICU Provider Sentiment is Associated with Diagnostic Imaging Utilization

    No full text
    The judgment of intensive care unit (ICU) providers is difficult to measure using conventional structured electronic medical record (EMR) data. However, provider sentiment may be a proxy for such judgment. Utilizing 10 years of EMR data, this study evaluates the association between provider sentiment and diagnostic imaging utilization. We extracted daily positive / negative sentiment scores of written provider notes, and used a Poisson regression to estimate sentiment association with the total number of daily imaging reports. After adjusting for confounding factors, we found that (1) negative sentiment was associated with increased imaging utilization (p < 0.01), (2) sentiment's association was most pronounced at the beginning of the ICU stay (p < 0.01), and (3) the presence of any form of sentiment increased diagnostic imaging utilization up to a critical threshold (p < 0.01). Our results indicate that provider sentiment may clarify currently unexplained variance in resource utilization and clinical practice.National Institutes of Health (U.S.) (Grant NTP-T32 EB 001680)National Institutes of Health (U.S.) (Grant AMNTP T90 DA 22759

    Severity of illness scores may misclassify critically ill obese patients

    No full text
    Objective: Severity of illness scores rest on the assumption that patients have normal physiologic values at baseline and that patients with similar severity of illness scores have the same degree of deviation from their usual state. Prior studies have reported differences in baseline physiology, including laboratory markers, between obese and normal weight individuals, but these differences have not been analyzed in the ICU. We compared deviation from baseline of pertinent ICU laboratory test results between obese and normal weight patients, adjusted for the severity of illness. Design: Retrospective cohort study in a large ICU database. Setting: Tertiary teaching hospital. Patients: Obese and normal weight patients who had laboratory results documented between 3 days and 1 year prior to hospital admission. Interventions: None. Measurements and Main Results: Seven hundred sixty-nine normal weight patients were compared with 1,258 obese patients. After adjusting for the severity of illness score, age, comorbidity index, baseline laboratory result, and ICU type, the following deviations were found to be statistically significant: WBC 0.80 (95% CI, 0.27–1.33) × 109/L; p = 0.003; log (blood urea nitrogen) 0.01 (95% CI, 0.00–0.02); p = 0.014; log (creatinine) 0.03 (95% CI, 0.02–0.05), p < 0.001; with all deviations higher in obese patients. A logistic regression analysis suggested that after adjusting for age and severity of illness at least one of these deviations had a statistically significant effect on hospital mortality (p = 0.009). Conclusions: Among patients with the same severity of illness score, we detected clinically small but significant deviations in WBC, creatinine, and blood urea nitrogen from baseline in obese compared with normal weight patients. These small deviations are likely to be increasingly important as bigger data are analyzed in increasingly precise ways. Recognition of the extent to which all critically ill patients may deviate from their own baseline may improve the objectivity, precision, and generalizability of ICU mortality prediction and severity adjustment models

    Data-driven curation process for describing the blood glucose management in the intensive care unit

    No full text
    © 2021, The Author(s). Analysis of real-world glucose and insulin clinical data recorded in electronic medical records can provide insights into tailored approaches to clinical care, yet presents many analytic challenges. This work makes publicly available a dataset that contains the curated entries of blood glucose readings and administered insulin on a per-patient basis during ICU admissions in the Medical Information Mart for Intensive Care (MIMIC-III) database version 1.4. Also, the present study details the data curation process used to extract and match glucose values to insulin therapy. The curation process includes the creation of glucose-insulin pairing rules according to clinical expert-defined physiologic and pharmacologic parameters. Through this approach, it was possible to align nearly 76% of insulin events to a preceding blood glucose reading for nearly 9,600 critically ill patients. This work has the potential to reveal trends in real-world practice for the management of blood glucose. This data extraction and processing serve as a framework for future studies of glucose and insulin in the intensive care unit

    Bridging the Health Data Divide

    Get PDF
    Fundamental quality, safety, and cost problems have not been resolved by the increasing digitization of health care. This digitization has progressed alongside the presence of a persistent divide between clinicians, the domain experts, and the technical experts, such as data scientists. The disconnect between clinicians and data scientists translates into a waste of research and health care resources, slow uptake of innovations, and poorer outcomes than are desirable and achievable. The divide can be narrowed by creating a culture of collaboration between these two disciplines, exemplified by events such as datathons. However, in order to more fully and meaningfully bridge the divide, the infrastructure of medical education, publication, and funding processes must evolve to support and enhance a learning health care system.National Institute for Biomedical Imaging and Bioengineering (U.S.) (R01 EB017205-01A1
    corecore