96 research outputs found

    Chapter Raccont_Arte. Linguaggi creativi per l’infanzia

    Get PDF
    The 43rd UID conference, held in Genova, takes up the theme of ‘Dialogues’ as practice and debate on many fundamental topics in our social life, especially in these complex and not yet resolved times. The city of Genova offers the opportunity to ponder on the value of comparison and on the possibilities for the community, naturally focused on the aspects that concern us, as professors, researchers, disseminators of knowledge, or on all the possibile meanings of the discipline of representation and its dialogue with ‘others’, which we have broadly catalogued in three macro areas: History, Semiotics, Science / Technology. Therefore, “dialogue” as a profitable exchange based on a common language, without which it is impossible to comprehend and understand one another; and the graphic sign that connotes the conference is the precise transcription of this concept: the title ‘translated’ into signs, derived from the visual alphabet designed for the visual identity of the UID since 2017. There are many topics which refer to three macro sessions: - Witnessing (signs and history) - Communicating (signs and semiotics) - Experimenting (signs and sciences) Thanks to the different points of view, an exceptional resource of our disciplinary area, we want to try to outline the prevailing theoretical-operational synergies, the collaborative lines of an instrumental nature, the recent updates of the repertoires of images that attest and nourish the relations among representation, history, semiotics, sciences

    Interplay between FGFR2b-induced autophagy and phagocytosis: role of PLCγ-mediated signalling

    Get PDF
    Signalling of the epithelial splicing variant of the fibroblast growth factor receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human keratinocytes. Here, we investigated, in the cell model of HaCaT keratinocytes, whether the two processes might be related and the possible involvement of PLCÎł signalling. Using fluorescence and electron microscopy, we demonstrated that the FGFR2b-induced phagocytosis and autophagy involve converging autophagosomal and phagosomal compartments. Moreover, the forced expression of FGFR2b signalling mutants and the use of specific inhibitors of FGFR2b substrates showed that the receptor-triggered autophagy requires PLCÎł signalling, which in turn activates JNK1 via PKCÎŽ. Finally, we found that in primary human keratinocytes derived from light or dark pigmented skin and expressing different levels of FGFR2b, the rate of phagocytosis and autophagy and the convergence of the two intracellular pathways are dependent on the level of receptor expression, suggesting that FGFR2b signalling would control in vivo the number of melanosomes in keratinocytes, determining skin pigmentation

    Autosomal mutations affecting Y chromosome loops in Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Y chromosome of <it>Drosophila melanogaster </it>harbors several genes required for male fertility. The genes for these fertility factors are very large in size and contain conspicuous amounts of repetitive DNA and transposons. Three of these loci (<it>ks-1</it>, <it>kl-3 </it>and <it>kl-5</it>) have the ability to develop giant lampbrush-like loops in primary spermatocytes, a cytological manifestation of their active state in these cells. Y-loops bind a number of non-Y encoded proteins, but the mechanisms regulating their development and their specific functions are still to be elucidated.</p> <p>Results</p> <p>Here we report the results of a screen of 726 male sterile lines to identify novel autosomal genes controlling Y-loop function. We analyzed mutant testis preparations both <it>in vivo </it>and by immunofluorescence using antibodies directed against Y-loop-associated proteins. This screen enabled us to isolate 17 mutations at 15 loci whose wild-type function is required for proper Y-loop morphogenesis. Six of these loci are likely to specifically control loop development, while the others display pleiotropic effects on both loops and meiotic processes such as spermiogenesis, sperm development and maturation. We also determined the map position of the mutations affecting exclusively Y-loop morphology.</p> <p>Conclusion</p> <p>Our cytological screening permitted us to identify novel genetic functions required for male spermatogenesis, some of which show pleiotropic effects. Analysis of these mutations also shows that loop development can be uncoupled from meiosis progression. These data represent a useful framework for the characterization of Y-loop development at a molecular level and for the study of the genetic control of heterochromatin.</p

    A role for Separase in telomere protection

    Get PDF
    Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity and are assembled independently of the sequence. Fly telomeres are protected by the terminin complex that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. We show that mutations in the Drosophila Separase encoding gene Sse lead not only to endoreduplication but also telomeric fusions (TFs), suggesting a role for Sse in telomere capping. We demonstrate that Separase binds terminin proteins and HP1, and that it is enriched at telomeres. Furthermore, we show that loss of Sse strongly reduces HP1 levels, and that HP1 overexpression in Sse mutants suppresses TFs, suggesting that TFs are caused by a HP1 diminution. Finally, we find that siRNA-induced depletion of ESPL1, the Sse human orthologue, causes telomere dysfunction and HP1 level reduction in primary fibroblasts, highlighting a conserved role of Separase in telomere protection

    Time-Domain Reflectometry (TDR) monitoring at a lab scale of aerobic biological processes in a soil contaminated by diesel oil

    Get PDF
    This study aims to monitor the biological processes ongoing in a hydrocarbon polluted soil. The experiments were carried out at a laboratory scale by measuring the evolution of its geophysical electromagnetic parameters. Time-domain reflectometry (TDR) probes were used to measure dielectric permittivity and electrical conductivity in columns of sandy soil artificially contaminated with diesel oil (Voil/Vtot = 0.19). To provide aerobic conditions suitable for the growth of microorganisms, they were hydrated with Mineral Salt Medium for Bacteria. One mesocosm was aerated by injecting air from the bottom of the column, while the other had only natural aeration due to diffusion of air through the soil itself. The monitoring lasted 105 days. Geophysical measurements were supported by microbiological, gas chromatographic analyses, and scanning electron microscope (SEM) images. Air injection heavily influenced the TDR monitoring, probably due to the generation of air bubbles around the probe that interfered with the probe–soil coupling. Therefore, the measurement accuracy of geophysical properties was dramatically reduced in the aerated system, although biological analyses showed that aeration strongly supports microbial activity. In the non-aerated system, a slight (2%) linear decrease of dielectric permittivity was observed over time. Meanwhile, the electrical conductivity initially decreased, then increased from day 20 to day 45, then decreased again by about 30%. We compared these results with other researches in recent literature to explain the complex biological phenomena that can induce variations in electrical parameters in a contaminated soil matrix, from salt depletion to pore clogging

    Bioremediation kinetics in diesel oil polluted soil, aimed to geophysical monitoring

    Get PDF
    In this work the kinetics of aerobic bioremediation of diesel oil polluted soil was evaluated comparing microcosms at different values of water content (u%) and carbon to nitrogen ratio (C/N). The percentage of degraded diesel oil is influenced by these two parameters due to their relevance for microbial metabolism. In addition, water content influences substrate dispersion and the contact between microorganisms and pollutant. The experimental runs allowed to model the process kinetics by the first and the second order model. In general, the best removal efficiency is achieved with C/N = 120 and u% = 8%, with the half-life time in the order of 70 days. On this base, a geophysical model was tested to predict the dielectrical permittivity of a sandy soil partially saturated with water, gas and diesel oil. The result of the modelling activity can be useful to the experimental design for monitoring the diesel oil degradation at laboratory scale

    Structural and Vibro-Acoustics Optimization of a Car Body Rear Part

    Get PDF
    The perceived vibro-acoustic comfort, inside the passenger compartment, under driving conditions, is strictly related to the car body torsional behavior. The aim of this work was to identify which parts of a car body most influence the first torsional mode, in order to modify them and acquire an increase in such car body natural frequency. It was also intended to exploit the great potential of 3D printing that allows an increase in the complexity of component shapes, with an acceptable compromise with respect to production costs. A design and material (from steel to aluminum) change of a car body rear part, which was identified as the structural part of the car body with the most relevant impact on the frequency of the first torsional mode, was assessed in terms of structural and vibro-acoustic performances. In particular, with the constraint of increasing the structural and vibroacoustic performances and, at the same time, minimize the weight of the structure itself, geometric, structural (e.g., type of connections), and material changes of the car body rear part were assessed. Working on a car model dating back to 2008, which was already compliant with structural and vibro-acoustic regulatory norms, an increase of 2 Hz on the first torsional mode frequency of the Trimmed Body model was obtained. In parallel, a weight reduction in the optimized components was also gained. It was also requested to lower the cabin sound pressure levels, optimizing the vibro-acoustic transfer functions from the accelerations at engine mounts and suspension attachment points to the cabin inside. It was shown how the combined use of advanced topological and structural optimization tools, with the capabilities of an unconventional manufacturing technology, such as 3D printing in aluminum, could guarantee an increase in the vibro-acoustics and structural car performances, also gaining a weight reduction

    Hepatitis B virus DNA integration in tumour tissue of a non-cirrhotic HFE-haemochromatosis patient with hepatocellular carcinoma.

    Get PDF
    Co-existence of multiple causes of liver injury increases the risk of hepatocellular carcinoma (HCC) development. HCC usually develops in patients with cirrhosis although it may also occur in individuals with no or mild liver disease, in particular in cases with hepatitis B virus (HBV) infection. Here we report the case of a 43year-old man with HFE-haemochromatosis, seronegative for hepatitis B and C infections, who developed HCC in the absence of severe liver damage. Both tumoural and non-tumoural liver DNA extracts were tested by nested-PCR and primers specific for four different HBV genomic regions in order to evaluate the presence of occult HBV infection. Only X gene sequences were detected in tumour (but not in non-tumour) DNA extracts. HBV-Alu PCR showed a HBV integration involving a 5'-deleted X gene with an intact enhancer-II/basal-core promoter region. The viral-host junction sequencing revealed that this integrant was located upstream of the partitioning-defective-6-homolog-gamma gene (PARD6G) and real time-PCR quantification demonstrated that PARD6G was overexpressed in tumour compared to non-tumour liver tissues. In conclusion, the combination of HFE-haemochromatosis and occult HBV infection in this patient might have led to a sequel of cellular events that determined the development of HCC even in the absence of cirrhosis

    Phantoms in medicine: the case of ophthalmology

    Get PDF
    Physical and in-silico phantoms have revealed extremely useful in the development of new surgical techniques and medical devices and for training purposes. The fabrication of eye phantoms requires knowledge of anatomy and physical principles beyond the eye physiology and medical instruments used in the clinical scenario. After a proper definition of phantoms and the discussion about their classification, the present work reviews the various phantoms developed in ophthalmology, illustrating the rationale of their design
    • 

    corecore