104 research outputs found

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    A new alloantigen, Ly-8, recognized by C3H anti-AKR serum

    Full text link
    A new membrane alloantigen, designated Ly-8.2, is defined by a C3H anti-AKR serum. The locus, Ly-8 , which controls this determinant is not linked to Thy-1, Ly-4, Ly-6, H-2 , albino (c), or brown ( b ). Ly-8.2 has a unique strain distribution, and appears to be present on both T and B lymphocytes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46747/1/251_2005_Article_BF01576977.pd

    Iterative reconstruction and individualized automatic tube current selection reduce radiation dose while maintaining image quality in 320-multidetector computed tomography coronary angiography

    Get PDF
    AimTo assess the effect of two iterative reconstruction algorithms (AIDR and AIDR3D) and individualized automatic tube current selection on radiation dose and image quality in computed tomography coronary angiography (CTCA).Materials and methodsIn a single-centre cohort study, 942 patients underwent electrocardiogram-gated CTCA using a 320-multidetector CT system. Images from group 1 (n = 228) were reconstructed with a filtered back projection algorithm (Quantum Denoising Software, QDS+). Iterative reconstruction was used for group 2 (AIDR, n = 379) and group 3 (AIDR3D, n = 335). Tube current was selected based on body mass index (BMI) for groups 1 and 2, and selected automatically based on scout image attenuation for group 3. Subjective image quality was graded on a four-point scale (1 = excellent, 4 = non-diagnostic).ResultsThere were no differences in age (p = 0.975), body mass index (p = 0.435), or heart rate (p = 0.746) between the groups. Image quality improved with iterative reconstruction and automatic tube current selection [1.3 (95% confidence intervals (CI): 1.2–1.4), 1.2 (1.1–1.2) and 1.1 (1–1.2) respectively; p < 0.001] and radiation dose decreased [274 (260–290), 242 (230–253) and 168 (156–180) mGy cm, respectively; p < 0.001].ConclusionThe application of the latest iterative reconstruction algorithm and individualized automatic tube current selection can substantially reduce radiation dose whilst improving image quality in CTCA

    Intracellular Developmental Timers

    No full text
    corecore