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AIM: To assess the effect of two iterative reconstruction algorithms (AIDR and AIDR3D) and
individualized automatic tube current selection on radiation dose and image quality in
computed tomography coronary angiography (CTCA).
MATERIALS AND METHODS: In a single-centre cohort study, 942 patients underwent

electrocardiogram-gated CTCA using a 320-multidetector CT system. Images from group 1
(n ¼ 228) were reconstructed with a filtered back projection algorithm (Quantum Denoising
Software, QDSþ). Iterative reconstruction was used for group 2 (AIDR, n ¼ 379) and group 3
(AIDR3D, n ¼ 335). Tube current was selected based on body mass index (BMI) for groups 1
and 2, and selected automatically based on scout image attenuation for group 3. Subjective
image quality was graded on a four-point scale (1 ¼ excellent, 4 ¼ non-diagnostic).
RESULTS: There were no differences in age (p ¼ 0.975), body mass index (p ¼ 0.435), or heart

rate (p ¼ 0.746) between the groups. Image quality improved with iterative reconstruction and
automatic tube current selection [1.3 (95% confidence intervals (CI): 1.2e1.4),1.2 (1.1e1.2) and1.1
(1e1.2) respectively; p < 0.001] and radiation dose decreased [274 (260e290), 242 (230e253)
and 168 (156e180) mGy cm, respectively; p < 0.001].
CONCLUSION: The application of the latest iterative reconstruction algorithm and individ-

ualized automatic tube current selection can substantially reduce radiation dose whilst
improving image quality in CTCA.
� 2013 The Authors. Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
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Introduction

Computed tomography coronary angiography (CTCA) is a
rapid minimally invasive test that is nowwidely used in the
diagnosis of coronary artery disease, because diagnostic
accuracy is comparable to invasive coronary angiography.1

Radiation exposure is a major healthcare concern due to
the increased lifetime risk of cancer,2 and diagnostic cardiac
imaging is responsible for 30% of radiation exposure.3 Given
that the use of CT is rapidly increasing,4 it is important to
develop strategies for CTCA that reduce radiation dose
whilst maintaining image quality.

A variety of strategies to reduce radiation exposure in
CTCA have been developed including prospective electro-
cardiogram gating, tube current modulation, tube voltage
reduction, minimized scan range, and heart rate reduc-
tion.5,6 Patient-tailored imaging is important to avoid under
or over-exposure that can lead to grainy images or an un-
necessarily high radiation dose. Patient-tailored imaging
based on body mass index is widely used in CTCA.7,8 How-
ever, bodymass index is not necessarily an accurate guide to
thoracic attenuation due to the wide variation in body
habitus and fat distribution. Alternative methods proposed
to select exposure settings include measurement of chest
dimensions,9 chest tissue composition,10 scout image
attenuation,11 unenhanced attenuation,12 and the use of
automatic exposure control.13

Advances in CT technology have led to the development
of iterative reconstruction techniques that have the poten-
tial to reduce radiation dose while maintaining image
quality. Iterative reconstruction techniques were applied in
early CT machines and have been widely used in nuclear
medicine techniques, such as positron-emission tomogra-
phy. However, the high computational demands and
consequent long reconstruction times of iterative recon-
struction algorithms meant that filtered back projection
became more widely used in CT. More recently, iterative
reconstruction algorithms have been shown to reduce im-
age noise or radiation dose in CTCA.14,15

The combination of iterative reconstruction technology
and individualized automatic tube current selection has the
potential to reduce radiation dosewhilst maintaining image
quality. In the present study, the effect of applying iterative
reconstruction and software that automatically selects tube
current based on scout image attenuation, was assessed
regarding radiation dose and image quality in CTCA.
Table 1
Selection of exposure settings for computed tomography coronary angiography.

Body mass
index (kg/m2)

Group 1 (QDSþ) Group 2 (AIDR)

Tube voltage
(kV)

Tube current
(mA)

Tube voltage
(kV)

<20 100 400 to 450 100
20e26 450 to 580
27e30 120 510 to 530 120
31e38 560 to 570
39e40 135 480 to 500
>40 500 135
Materials and methods

Study design

In a single-centre cohort study, the images of 942
consecutive patients who underwent clinically indicated
CTCA using a 320-multidetector scanner (Aquilion ONE,
Toshiba Medical Systems, Japan) were assessed. The local
ethics committee waived the requirement for gaining
informed consent for this study, as this was part of a clinical
service development. Exclusion criteria for CT were docu-
mented severe allergy to iodinated contrast medium,
impaired renal function (estimated glomerular filtration
rate <30 ml/min), pregnancy, or weight exceeding the
maximum tolerance of the CT bed (250 kg).

Patients were divided into three groups based on the
reconstruction algorithm and method of tube current se-
lection. Images from group 1 (n ¼ 228) were reconstructed
with a filtered back projection reconstruction algorithm
(Quantum Denoising Software, QDSþ). Iterative recon-
struction was applied in group 2 [AIDR (Adaptive Iterative
Dose Reduction), n ¼ 379] and group 3 (AIDR3D, n ¼ 335).
Tube current was selected based on body mass index for
group 1 and 2, but was selected automatically based on
scout image attenuation for group 3.

Rate-limiting medication

Patients with a heart rate above 60 beats/min received
rate-limiting medication with intravenous metoprolol
(2.5e50 mg) or oral and intravenous verapamil (80 mg oral
and 2.5e5 mg intravenous). All patients received sublingual
glyceryl trinitrate (300 mg) unless contraindicated.

CT

After the acquisition of scout images, participants un-
derwent prospective, electrocardiogram-gated contrast-
enhanced CTCA using half-segment reconstruction and a
0.35ms rotation time. Detector coveragewas selected based
on scout images to cover from 20 mm below the carina to
the base of the heart using volume sizes of 160, 140, 128,
120, 100, or 80 mm. A tri-phasic injection of intravenous
contrast agent (iomeprol, 400 mg iodine/ml; Iomeron 400,
Bucks, UK) was administered based on body mass index
(<30 kg/m2, 50 ml; >30 kg/m2, 60 ml, >40 kg/m2, 70 ml).
Group 3 (AIDR3D and SUREexposure)

Tube current
(mA)

Tube voltage
(kV)

Tube current (mA)

320 to 360 100 Automatic selection based on
scout image attenuation360 to 460

410 to 420 120
450 to 460
480 to 500
500



Table 2
Patient characteristics.

Group 1
(QDSþ)

Group 2
(AIDR)

Group 3 (AIDR3D
and SUREexposure)

p-Value

N 228 379 335 e

Age (years) 58 (56, 59) 58 (57, 59) 58 (57, 59) 0.975
Male 89 (39%) 182 (48%) 181 (54%) 0.002
Body mass

index
(kg/m2)

29 (28, 30) 30 (29, 30) 29 (29, 30) 0.453

Heart rate
(beats/min)

60 (58, 61) 60 (59, 61) 59 (58, 60) 0.746

Data are mean (95% confidence interval) or number (percentage).
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For patients with a heart rate below 65 beats/min, images
were acquired with an acquisitionwindow of 70e80% of the
interval between two consecutive QRS complexes. For pa-
tients with a heart rate above 65 beats/min the acquisition
window was widened to 30e80%.

Tube voltage was selected based on body mass index. For
groups 1 and 2, a tube voltage of 100 kV was used for pa-
tients with a body mass index <27 kg/m2, 120 kV for
27e38 kg/m2, and 135 kV > 38 kg/m2. For group 2, a tube
voltage of 100 kV was used for patients with a body mass
index �30 kg/m2 and 120 kV for patients >30 kg/m2. Tube
current was selected based on body mass index for group 1
and group 2 (Table 1). For group 3 individualized, auto-
mated tube current selection based on scout image atten-
uation was applied (SUREexposure, Toshiba Medical
Systems, Japan). The predetermined level of image noise
was set at a standard deviation of 45 (0.5 mm section
thickness, reconstruction kernel filter FC05). For groups 1
and 2, imaging was triggered when a threshold of 180 HU
was reached in the left ventricle. For group 3, a more rapid
triggering mechanism was used, where bolus triggering
occurred during inspiration with reduced delay and a
threshold of 340 HU in the left ventricle.

Image reconstruction

All images were reconstructed with a section thickness of
0.5 mm and an increment of 0.25 mm. Images from group 1
were reconstructed using the standard filtered back projec-
tion algorithm (QDSþ) and a reconstruction kernel filter
optimized for cardiac imaging (FC03). Images from group 2
were reconstructed using an iterative reconstruction algo-
rithm (AIDR) and the samereconstructionkernelfilter (FC03).
Table 3
Details of computed tomography coronary angiography imaging.

Group 1 (QDS

Scan range (mm) 133 (131, 134
Acquisition window (30e80% versus 70e80%) 33/195
Contrast medium (ml) 55 (54, 56)
Tube voltage (kV) 100 34.2%

120 57.5%
135 8.3%

Tube current (mA) 100 kV 538 (530, 547
120 kV 538 (533, 543

Data are mean (95% confidence interval) or percentage (%).
Images fromgroup3were reconstructedusing anew iterative
reconstruction algorithm (AIDR3D)with the standard level of
blending. This produced visually softer images than QDSþ or
AIDR algorithms, and thus, a slightly sharper reconstruction
kernel filter (FC05) was used to obtain images that were
subjectively assessed as similar between the three groups.

Radiation dose

The doseelength product displayed on the CT console
after imaging was recorded. This was converted to milli-
sieverts using the commonly used conversion factor of
0.014 mSv/mGy cm and an scanner-specific conversion
factor of 0.028 mSv/mGy cm calculated using the method
described by Huda et al.16

Image analysis

Images were analysed on a dedicated post-processing
workstation (Vitrea fX, Vital Images, Minnetonka, MN, USA)
and were assessed by two trained observers. Image quality
was assessed on a four-point Likert scale (1 ¼ excellent;
2¼mild reduction in image quality; 3¼moderate reduction
in image quality; 4 ¼ severe reduction in image quality).

Image noise was assessed with regions of interest placed
in the ascending aorta at the level of the left main stem, the
proximal interventricular septum, and in the liver. Image
noise was determined as the standard deviations of the
radiodensity within the region of interest. Contrast-to-noise
ratio was calculated as the attenuation value in the aorta
minus the attenuation value in the liver divided by the
image noise in the aorta. The contrast-to-myocardium ratio
was calculated as the attenuation value in the aorta minus
the attenuation value in the interventricular septum
divided by the image noise in the aorta.

Statistical analysis

Statistical analysis was performed using SPSS (version 18
for Mac OS X, IBM Armonk, NY, USA). Normally distributed
quantitative variables are presented with mean and 95%
confidence intervals. Non-normally distributed data are
presented with median and interquartile ranges. Statistical
significance was assessed using analysis of variance, Dun-
nett’s t-test, or Pearson’s chi-squared test as appropriate. A
statistically significant difference was defined as a two-
sided p-value <0.05.
þ) Group 2 (AIDR) Group 3 (AIDR3D
and SUREexposure)

p-Value

) 130 (129, 131) 128 (127, 129) 0.003
80/299 76/259 0.046
56 (55, 56) 55 (54, 56) 0.561
31.1% 57.3% <0.001
59.6% 42.7%
9.2% 0%

) 432 (425, 440) 334 (313, 355) <0.001
) 431 (428, 434) 426 (404, 448) <0.001



Table 4
The effect of reconstruction on image quality and radiation dose.

Group 1 (QDSþ) Group 2 (AIDR) Group 3 (AIDR3D
and SUREexposure)

p-Value

Subjective image quality 1.3 (1.2, 1.4) 1.2 (1.1, 1.2)a 1.1 (1.0-1.2)a <0.001
Aorta attenuation (HU) 430 (416, 443) 426 (417, 434) 508 (495, 520)a,b <0.001
Liver attenuation (HU) 65 (62, 68) 61 (59, 63)a 59 (58, 61)a,b <0.001
IVS attenuation (HU) 89 (86, 92) 84 (83, 86)a 87 (85, 89) 0.007
Image noise aorta (HU) 32 (31, 33) 31 (30, 32) 41 (40, 41)a,b <0.001
Image noise liver (HU) 39 (38, 41) 37 (36, 38)a 39 (39, 40)b 0.001
Image noise IVS (HU) 34 (33, 36) 31 (31, 32)a 37 (36, 37)a,b <0.001
Contrast-to-noise ratio 12 (12, 13) 12 (12, 13) 11 (11, 12)b,a 0.005
Contrast-to-myocardium ratio 11 (11, 12) 11 (11, 12) 11 (10, 11)b 0.008
DLP (mGy cm) 274 (260, 290) 242 (230, 253)a 168 (156, 180)a,b <0.001

Data are mean (95% confidence interval).
IVS, intraventricular septum; DLP, doseelength product; HU, Hounsfield unit.

a p < 0.05 compared to group 1.
b p < 0.05 compared to group 2.
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Results

The images of 942 patients were assessed (group 1,
n ¼ 228; group 2, n ¼ 379; group 3, n¼ 335). There were no
differences in age, heart rate, or body mass index between
the groups (Table 2). There was a small increase in the
number of males imaged in groups 2 and 3. There was a
small reduction in z-axis volume size and an increase in
30e80% acquisition windows between group 1 and groups
2 and 3 (Table 3). There was no difference in the volume of
contrast medium used between groups.

There was an increase in the use of the lower tube
voltage in group 3 (p < 0.001) and a reduction in tube
current between group 1 and both groups 2 (p < 0.001) and
3 (p < 0.001; Table 2). The use of scout image-based se-
lection of tube current led to the use of a much wider range
of tube currents in group 3 (Fig 2).
Figure 1 Box plot showing the reduction in the mean dose length
product in groups 1, 2, and 3. There was a statistically significant
reduction in doseelength product between groups 1 and 2, and
groups 2 and 3.

Figure 2 Box plots showing the reduction in the mean tube current
between groups 1, 2, and 3 for patients imaged using (a) 100 kV and
(b) 120 kV. There was a statistically significant reduction in tube
current between groups 1 and 2, and groups 2 and 3. There was also
an increase in the range of tube currents utilized in group 3.
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Compared to filtered back projection (QDSþ) re-
constructions, the application of iterative reconstructions
led to an improvement in subjective image quality
(p < 0.001; Table 4). There was no difference in subjective
image quality obtained between the two iterative recon-
struction algorithms (p ¼ 0.861). Figs 3e5 show example
submillisievert images from patients in group 3 with
normal, moderate, and severe coronary artery disease. Fig 6
shows coronary artery images from patients of all three
groups with the same body mass index and sex.

For group 3, the attenuation density was higher in the
aorta and lower in the liver (Table 4). However, there was no
difference in attenuation density measured in the interven-
tricular septum. There was an apparently small but not sta-
tistically significant reduction in noise between group 1 and
group 2 in the liver and interventricular septum. There was
an increase in noise in the aorta and interventricular septum
in group 3. There was no difference in contrast-to-noise or
contrast-to-myocardium between the three groups.

There was a reduction in radiation dose with the appli-
cation of AIDR and AIDR3D protocols compared to the
standard imaging protocol (p ¼ 0.001 and p < 0.001,
respectively; Table 4, Fig 1). Using the 0.014 mSv/mGy cm
conversion factor, this equates to radiation exposures of
3.84 [95% confidence intervals (CI) CI: 3.64e4.06] mSv for
group 1, 3.39 (CI: 3.22e3.54) mSv for group 2, and 2.35 (CI:
2.18e2.52) mSv for group 3. Using the 0.028 mSv/mGy cm
conversion factor, this equates to radiation exposures of
7.67 (CI: 7.28e8.12) mSv for group 1, 6.78 (CI: 6.44e7.08)
mSv for group 2, and 4.70 (CI: 4.37e5.04) mSv for group 3.

In addition, a post-hoc analysis was performed of 200
patients from each groupmatched for bodymass index, sex,
and acquisition window (see Supplementary material
Table S1). The results were similar with a reduction in ra-
diation dose [261 (CI: 246e276) mGy cm versus 211 (CI:
199e223) mGy cm versus 141 (CI: 129e153) mGy cm,
Figure 3 Example images from group 3 of a patient with normal coronary
left anterior descending artery, and (c) right coronary artery. The female p
p < 0.001], improvement in subjective image quality [1.3
(CI: 1.2e1.4) versus 1.1 (CI: 1.1e1.2) versus 1.1 (CI: 1.1e1.2);
p < 0.001] and no difference in contrast-to-noise ratio be-
tween groups [12 (CI: 12e13) for all groups, p ¼ 0.747)].

Thus compared to the standard imaging protocol, the
application of AIDR and AIDR3D protocols led to a 12% and
39% reduction in radiation dose, respectively.

Discussion

The application of iterative reconstruction and auto-
mated selection of tube current based on the attenuation
density of scout images can reduce radiation dose whilst
maintaining image quality in CTCA. These adaptations are
important given the widespread, escalating, and often
repeated use of CTCA.

Iterative reconstruction algorithms have been shown to
reduce image noise in CTCA. Tatsugami et al.17 showed that
reconstructing images using AIDR reduced image noise and
contrast-to-noise ratio compared to the same data recon-
structed with a filtered back projection algorithm. Similar
results have been reported with other iterative recon-
struction algorithms.18,19 This decrease in image noise pro-
vides the potential to reduce tube current and voltage, and
thus radiation dose, in CTCA. In a study of 70 patients, the
application of AIDR, smaller scan ranges, and 100 kV tube
voltage as part of a low-dose protocol led to an 80%
reduction in radiation dose.15 In the present study, a more
modest reduction in radiation dose was observed but this
reflected the fact that smaller scan ranges and 100 kV tube
voltage had already been implemented where appropriate.
Studies of other iterative reconstruction algorithms have
identified radiation dose reductions of between 50 and
63%.8,20,21 In a study of 243 patients imaged using the
Adaptive Statistical Iterative Reconstruction (ASIR, GE
Healthcare) algorithm compared to 331 patients using
arteries showing (a) a three-dimensional (3D) image of the heart, (b)
atient had a BMI of 20 and a radiation dose of 0.54 mSv (k ¼ 0.014).



Figure 4 Example images from group 3 of a patient with moderate coronary artery disease showing (a) a 3D image of the heart, (b) the left
anterior descending artery with areas of eccentric calcified plaque, (c) the normal left circumflex artery, and (d) the right coronary artery with
mixed calcified and non-calcified plaque. The male patient had a BMI of 18 and a radiation dose of 0.66 mSv (k ¼ 0.014).

Figure 5 Example images from group 3 of a patient with severe three-vessel coronary artery disease. There was a severe stenosis of the right
coronary artery (yellow arrows) identified on the 3D image of the heart (a), curved planar reformation (b), invasive coronary angiography (c),
and cross-sectional images of the coronary artery (d) with areas of non-calcified plaque and both macro and microcalcifications. There were
significant stenoses (white arrows) of the left anterior descending artery (e) and left circumflex artery (f) that corresponded to images obtained
by invasive coronary angiography (g). The male patient had a BMI of 23 and a radiation dose of 0.86 mSv (k ¼ 0.014).
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Figure 6 Example images from three patients with stenoses in their proximal left anterior descending arteries. The patients had the same body
mass index (27 kg/m2) and sex (male), and were from group 1 (a), group 2 (b), or group 3 (c).
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filtered back projection, there was a 27% reduction in radi-
ation dose when adjusted for imaging settings.22 Similar to
the present study, the reduction in radiation dose was due
to the ability to reduce tube voltage and current. Although
the lowest tube voltage used in the present study was
100 kV, the use of iterative reconstruction in combination
with lower tube voltages, such as 80 kV, could further
reduce radiation dose.23

The application of AIDR in the present study led to a
reduction in image noise and maintenance of the contrast-
to-noise ratio. However, the use of a different triggering
mechanism and a different reconstruction kernel, in addi-
tion to the use of AIDR3D and SUREexposure, led to an in-
crease in aorta contrast attenuation and image noise.
Despite this, there was a small increase in subjective image
quality in AIDR and AIDR3D groups. Iterative reconstruction
algorithms may have effects in addition to alterations in
image noise, as they have been shown to reduce the
blooming artefact from calcified plaque24 and other dense
structures, such as coronary artery stents25 and mechanical
prosthetic heart valves.26

Both body mass index and scout image attenuation were
used to tailor images to the individual patient. The use of
chest tissue attenuation to select exposure settings reduces
radiation dose in CTCA11,12 and coronary artery calcium
scoring.27 These previous studies used manual measure-
ments and calculations, whereas the automated method
applied in the present study was rapid and easy to use.
Patient-tailored imaging is important in order to follow the
ALARA (As Low As Reasonably Achievable) principle. This is
particularly important for young women who are at the
greatest lifetime risk of developing cancer.2 Patient-tailored
imaging also enables the maintenance of more consistent
image quality: an important consideration as image quality
is associated with diagnostic accuracy.28

Study limitations

This was an observational cohort study as the nature of
the software changes between reconstruction algorithms,
which precluded a randomized study. Differences in soft-
ware may have contributed to the results of the study out-
with the effect of iterative reconstruction. For example,
scanner software versions 4.4, 4.5, or 4.6 were applied for
group 1, version 4.6 for group 2, and version 4.7 for group 3.
These data were collected over a prolonged period of time,
and thus, changes in referral patterns led to a difference in
sex frequencies between the groups. Men tend to have larger
coronary arteries and better image quality at CTCA.29 Thus,
that some of the observed benefit in image quality may be
attributable to this cannot be excluded. The difference in the
scan range between groups may also have contributed to the
results. However, in the post-hoc analysis, the results were
similar and there was no difference in scan range.

Diagnostic accuracy in comparison to invasive coronary
angiography was not assessed. The iterative reconstruction
algorithm produces smoother images, and thus, there is the
possibility that the degree of stenosis could be mis-
interpreted, particularly in smaller vessels, heavily calcified
vessels, or coronary artery stents. In addition, the use of
lower tube voltages, such as 80 kV, may not produce images
that are diagnostically similar to 100 or 120 kV. In striving to
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reduce radiation dose, it is important that image quality and
diagnostic accuracy are not compromised. Evidence of harm
from radiation exposure at these levels is extrapolated and
remains controversial. In addition, iterative reconstruction
should not be applied as an alternative to good practice in
applying optimized protocols.

A further limitation is that image quality was assessed on
a per-patient rather than a per-segment level. It was more
clinically relevant to assess image quality per patient, as this
most directly influences future investigations or treatment.
It was not possible to blind observers to the reconstruction
technique as, although reconstruction kernel filters were
chosen to produce similar results, it is possible to differ-
entiate between the images based on subtle differences.

In conclusion, CTCA is an increasing source of population
radiationexposure and this canbedramatically reducedby the
application of patient-tailored imaging protocols and iterative
reconstruction. These approaches should now be routinely
used in clinical practice tominimize theharmof this extremely
valuable and emerging diagnostic imaging technology.
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