61 research outputs found

    Two contemporaneous mitogenomes from terminal Pleistocene burials in eastern Beringia

    Get PDF
    Pleistocene residential sites with multiple contemporaneous human burials are extremely rare in the Americas. We report mitochondrial genomic variation in the first multiple mitochondrial genomes from a single prehistoric population: two infant burials (USR1 and USR2) from a common interment at the Upward Sun River Site in central Alaska dating to ~11,500 calendar years before present (cal B.P.). Using a targeted capture method and next-generation sequencing we determined that the USR1 infant possessed variants that define mitochondrial lineage C1b, while the USR2 genome falls at the root of lineage B2, allowing us to refine younger coalescence age estimates for these two clades. C1b and B2 are rare to absent in modern populations of Northern North America. Documentation of these lineages at this location in the Late Pleistocene provides evidence for the extent of mitochondrial diversity in early Beringian populations, which supports the expectations of the Beringian Standstill Model

    Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa

    Get PDF
    Background: Although the importance of the human oral microbiome for health and disease is increasingly recognized, variation in the composition of the oral microbiome across different climates and geographic regions is largely unexplored. Results: Here we analyze the saliva microbiome from native Alaskans (76 individuals from 4 populations), Germans (10 individuals from 1 population), and Africans (66 individuals from 3 populations) based on next-generation sequencing of partial 16S rRNA gene sequences. After quality filtering, a total of 67,916 analyzed sequences resulted in 5,592 OTUs (defined at ≥97% identity) and 123 genera. The three human groups differed significantly by the degree of diversity between and within individuals (e.g. beta diversity: Africans > Alaskans > Germans; alpha diversity: Germans > Alaskans > Africans). UniFrac, network, ANOSIM, and correlation analyses all indicated more similarities in the saliva microbiome of native Alaskans and Germans than between either group and Africans. The native Alaskans and Germans also had the highest number of shared bacterial interactions. At the level of shared OTUs, only limited support for a core microbiome shared across all three continental regions was provided, although partial correlation analysis did highlight interactions involving several pairs of genera as conserved across all human groups. Subsampling strategies for compensating for the unequal number of individuals per group or unequal sequence reads confirmed the above observations. Conclusion: Overall, this study illustrates the distinctiveness of the saliva microbiome of human groups living under very different climatic conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0316-1) contains supplementary material, which is available to authorized users

    Sediment Delivery to Sustain the Ganges-Brahmaputra Delta Under Climate Change and Anthropogenic Impacts

    Get PDF
    The principal nature-based solution for offsetting relative sea-level rise in the Ganges-Brahmaputra delta is the unabated delivery, dispersal, and deposition of the rivers’ ~1 billion-tonne annual sediment load. Recent hydrological transport modeling suggests that strengthening monsoon precipitation in the 21st century could increase this sediment delivery 34-60%; yet other studies demonstrate that sediment could decline 15-80% if planned dams and river diversions are fully implemented. We validate these modeled ranges by developing a comprehensive field-based sediment budget that quantifies the supply of Ganges-Brahmaputra river sediment under varying Holocene climate conditions. Our data reveal natural responses in sediment supply comparable to previously modeled results and suggest that increased sediment delivery may be capable of offsetting accelerated sea-level rise. This prospect for a naturally sustained Ganges-Brahmaputra delta presents possibilities beyond the dystopian future often posed for this system, but the implementation of currently proposed dams and diversions would preclude such opportunities

    Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylmalonic acidemia (MMA), a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT). Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition.</p> <p>Methods</p> <p>To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine <it>Mut </it>embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the <it>MUT </it>gene. Enzymatic and expression studies were used to assess the extent of functional correction.</p> <p>Results</p> <p>Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or <it>Mut </it>murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-<sup>14</sup>C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes.</p> <p>Conclusion</p> <p>These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.</p

    Fastq Files for H.tuberculata, blastula stage

    No full text
    These are fastq files for H.tuberculata, blastula stage. There are three replicates, two are 50 bp PE and one is 50 bp S

    S2_Data

    No full text
    Mfuzz Data for cluster generation in L. variegatus, c=

    Fastq Files for H.erythrogramma, 16-cell stage

    No full text
    These are fastq files for H.erythrogramma, 16-cell stage. There are three replicates, two are 50 bp PE and one is 50 bp S

    Fastq Files for H.tuberculata, gastrula stage

    No full text
    These are fastq files for H.tuberculata, gastrula stage. There are three replicates, two are 50 bp PE and one is 50 bp S
    • …
    corecore